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Efficient Reconstruction of Sequences

Vladimir I. Levenshtein Associate Member, IEEE

Abstract—In this paper, we introduce and solve some new prob- T "
lems of efficient reconstruction of an unknown sequence from its — channel C
versions distorted by errors of a certain type. These erroneous ver-
sions are considered as outputs of repeated transmissions over a
channel, either combinatorial channel defined by the maximum z Yo
number of permissible errors of a given type, or a discrete mem- channel ¢ ~_| N-recon-|
oryless channel. We are interested in the smallesV such that structor |2 = F(Y)
N erroneous versions always suffice to reconstruct a sequence of
length n, either exactly or with a preset accuracy and/or witha - - = = - - = = - o000 e e F
given probability. We are also interested in simple reconstruction
algorithms. Complete solutions for combinatorial channels with
some types of errors of interest in coding theory, namely, substitu- /
tions, transpositions, deletions, and insertions of symbols are given. N channel C N
For these cases, simple reconstruction algorithms based on ma-
jority and threshold principles and their nontrivial combination
are found_. In general, for combinatorial channels the_ considered Fig. 1. Schematic diagram of reconstructing a sequence
problem is reduced to a new problem of reconstructing a vertex
of an arbitrary graph with the help of the minimum number of . ) ) . .
vertices in its metrical ball of a given radius. A certain sufficient from the point of view of redundancy, but in various fields of
condition for solution of this problem is presented. For a discrete science, such as informatics, molecular biology, and chemistry,
memoryless channel, asymptotic behavior of the minimum number there are situations when no other method is feasible. With that

of repeated transmissions which are sufficient to reconstruct any ot ; : ;
sequence of lengt within Hamming distance d with error prob- motivation we study in this paper the problem of recovering an

ability ¢ is found whend/n and e tend to 0 asn — oo. A similar U”k”QVY” sequence (or messagey: (z1, ..., &n) € V when
result for the continuous channel with discrete time and additive @ sufficiently large number of patterns (sequences) are known
Gaussian noise is also obtained. which are distorted versions of We can assume that the com-
Index Terms—Algorithms, combinatorial and probabilistic ~ Ponents ofc belong to the alphabet, = {0, 1, ..., ¢ — 1},
ch_an_nels, error metric, graphs, reconstruction, repeated trans- ¢ > 2, and hencéd” C A;”.
mission, sequences. For the precise formulation of the problem we can define a
combinatorial or probabilistic channél and assume tha¥
I. INTRODUCTION patternsy,, ..., yn are obtained by multiple transmission of

« over the same channél (see Fig. 1). For a chosen type of
RADITIONAL problems of the theory of information single errors (for instance, substitutions, transpositions, or dele-
transmission consist in efficient transmission of mesjons of symbols), a combinatorial chanilis defined by the
sages of a set’ over noisy channels which are describeghaximum numbet of single errors which can occur during
by combinatorial or probabilistic conditions. In the solutioRransmission of any input sequence of lengtver the channel.
of these problems, aoding of the elements ol is used t0 As a probabilistic channel’ we consider an ordinary discrete
introduce a redundancy to the messages so that the distaRsRy channel without memory [20], [7]. For restoring a se-
(in a certain metric) between the encoded messages wouldgnce: € V in both cases we use a¥reconstructof” which
sufficiently large and allow one to correct errors at the outpyiaps the matriy” formed by the columng,, .. ., yx to V. We
of the channels. The efficiency of transmission is characterizgg)| £(y') anexact reconstructionf z if 7(Y) = z, and are-
by the amount of redundancy and by the complexity of thgnstruction of: within distance? if dy (F(Y), z) < d where
decoding algorithm. One method to combat errors is repeaigd;. .) s the Hamming distance. (The cae= 0 corresponds
transmission of a message, without coding. This is not efficief exact reconstruction.) In the case of a probabilistic channel
C, we call the probability of the everly (F(Y), ) > dthe
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A natural measure of efficiency of a solution of the combinasf six different columns obtained fromwith the help at most
torial problem under consideration is the minimum numier one transposition of two symbols? We show that this minimum
such that there exists aM-reconstructor which exactly recon-numberN equalsN°(J7, ¢) + 1 where
structs anye € V from any NV of its different erroneous pat- 1
terns (if they exist). It is also significant to find a simple realiza- N(I™, ) = n Z <w - 1) <n —w— 1) 1 '
tion of this mapping (reconstruction algorithm). Analogously, W — { ¢ i+1
for a probabilistic channel it is important to find the minimum )
numberN = Nc(n, d, €) such that there exists aM-recon- We also prove that for the reconstruction of
structor whose error probability of reconstructing anye V'
within distancel does not exceed a given0 < ¢ < 1/2).

Now we briefly describe the main results of the paper. In Sefgom the matrix}y’, whose columns are formed by if§ =
tion Il, we define combinatorial channels which are useful toye(.J +) + 1 erroneous patterns, the following threshold al-
describe combinatorial problems of efficient reconstruction gforithm can be applied:; = 1 if the number of ones in the
sequences and give solutions of these problems in the caset@frow of Y is greater thafN — 1)w/n andz; = 0 other-
single errors of interest in coding theory. First we consider thgse (4 = 1,...,n). In particular, N = n + 1 whent = 1
combinatorial problem of reconstructing an unknown sequenggd the six sequences are sufficient to uniquely restae/3,

z = (21, ..., z,) € Ay when knowingV different sequences and we have: = (1, 0, 0, 1, 0). If we remove the last column,
Y1, ¥2, .-, yn € Ay each of which differs fromx in at most  another solution: = (0, 0, 0, 1, 1) would be suitable as well.

¢ components (i.e., obtained by at meéstubstitutions). What e verify thatV = n + 1 different patterns are also sufficient

is the minimum numbeN which is sufficient to exactly recon- for the reconstruction of any € A” wheng > 3 andt = 1.
structanyz € A7? Does there exist a simple procedure for sughowever, this needs a generallzed version of the threshold al-
a reconstruction? For example, is the following matix gorithm which will be described in Section II. We also give so-
lutions to similar problems that allow asymmetric substitutions

z=(21, ..., 3,) €T}

8 8 (1) (1) (1) 8 8 1 (1) (1) (1) 00— 1lorl — 0.In th_ese cases; ¢ J,[;’_ can be efﬁciently .
00000100100 recoqstructed by_ appl'ylng Boolgan functions, respectively, dis-
00000010010 junction and conjunction @\7 var_lables, to rows of. _
A more complex combinatorial problem is connected with
0 1 0 1 1 111110 : .
the reconstruction of an arbitraty=(z1, ..., z,) € Ay when
from eleven different sequences (written as columns) sufficiefftowing different sequences, vz, ..., yv € A7, each ob-
to reconstruck: € A3 whent = 2? For anyn, ¢, andt we show tained fromz by deletions of exactly symbols and hence is a
that this minimum numbeN equalsN (A”, ¢) + 1 where subsequencer;,, ..., @, ,) of #, 1 <y < -+ <dp—y S
If N~(A7, t) denotes the maximum size of the set of common
Lt ‘ subsequences of length- ¢ of two different sequences = €
N(A7, ) =q>_ < ; ) (g—1) A?, thenN = N—(A?, t) + 1 is the minimum number such

i=0 that anyz € A} can be exactly reconstructed usingof its

different subsequences of length- ¢ (if they exist). We find

and prove that in each row of the matrix formed by the
P y N~(Ay, t) and prove that

columnsy, 2, ..., yn, One letter ofA, occurs more often

than others and it equals the componeptof the unknown -1

z = (x1, ..., xy). Thus, in this case, the majority algorithm N~ An t) Z < ) (q— 1)i (1)
can be applied to all rows d&f in order to reconstruct. In r

particular, fort = 2 eleven sequences above are sufficient to
reconstruct: € A3, andx = (0, 0, 0, 0, 1). Note that if we re-
move the last column df, another solution: = (1, 0, 0, 0, 1)
would also be suitable.

with equality forg = 2. In particular, N=(A7, 2) = 10 and
hence we can find a uniquec A3 such that the eleven columns
of the following matrix:

The next combinatorial problem is to reconstruct an unknown 11111111000
sequence = (z1, ..., &,) € AZ when knowing/ different 1001 1001111
sequencesg, vz, ..., yn € Ay obtained fromz with the help 01 010110000
of at most transpositions of two components. Since these trans- 101 00101011
positions do not change the weight of the binary veetowe 01 011001110

can assume that € J;, where0 < w < n andJ], is a subset
of A% consisting of all vectors of weight. As an example, can
we uniquely restore € J3 from the matrixy”

are subsequences of lengtbf «. An algorithm for reconstruc-
tion of x € A} with the help of V = N~(A7, t) + 1 of its
different subsequences of length- ¢ is based on an interesting
combination of majority and threshold principles. This algo-
rithm is described and illustrated by an example in Section Il
We also find the maximum numb&¥* (A7, ¢) of common su-
persequences of length+ ¢ of two different sequences from
Ay and present an algorithm for reconstruction of an arbitrary
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xr € A} when knowingN = N+(Ag, t) + 1 different super- channelC using a reducibleV-reconstructor (see Fig. 1) is
sequences of length + ¢ (obtained frome by insertions oft  equivalent tasingletransmission of this message over a certain
symbols of4,). discrete memoryless chann€ly which has an “improved”
The considered combinatorial problems show that in fact vigansition matrix.
deal with the same problem for different metrics 4. In this A channelC is referred to amondegeneraté its transition
connection, we advance in Section Il a graph-theoretical afratrix does not have two identical rows (otherwise, there exists
proach to the problem of reconstructing an unknown sequerggequence which cannot be reconstructed with error probability
using the minimum number of its patterns distorted by erroes< 1/2) and contains a column with at least two nonzero proba-
of a given type and restricted multiplicity. This problem is rebilities (otherwise, any output sequence allows us to reconstruct
duced to a new problem of reconstructing a vertex of an arbitragyactly the input sequence). For a chartiele consider a con-
graph when knowing a sufficient number of vertices in its mestanta(C) which was introduced in [22] for finding the zero
rical ball of a given radius. We consider a finite 3étof mes- rate exponent and note that< «(C) < 1if and only if C'is
sagesand a setd of one-to-one, in general, partial mappingsiondegenerate. The main result can be formulated as follows.
V — V (calledsingle errorg which have the following prop- Let e = ¢(n) andd = d(n) be functions such that — 0
erty:ifx, y € V, h € H,andh(x) = y,thenthereexistg € H andd/n — 0 asn — oo. Then for any nondegenerate discrete
such thatr = g(y). We define a grapliy = G(V, E) with the memoryless channgl
setV of vertices and the sét of edges wher¢z, v} € Fifand

n 1 1
only if z # y and there existd € H such that:(x) = y. Then Ne(n, d, &) ~ g+ gz ng '
the path distancg(z, i) between vertices andy of the graph ln a(lc)

G is equal to the minimum number of single errors translating ,
« to . This construction is applicable to many sorts of singl@ the case whed grows linearly an@ decreases not faster than

errors of interest in coding theory such as substitutions, trarfl €xPonent im, a bounded (i.e., independent:gf number of

positions, bursts, deletions and insertions of symbols, and arifgPetitions is sufficient.
metic errors. Moreover, we shall see that an arbitrary géaph We also consider the optimization problems of repeated trans-

maximal degree can be treated as a graph whose path distanr@éssm” over continuous channels with discrete time and addi-

is defined by a seH of r single errors. For an arbitrary graphtiVe noise [7]. The problem Of, fir_lding thg minimum _nymber
G of diameters and any integers, d, 0 < ¢, d < s, denote N(n, 6, ¢) of repeated transmissions, which are sufficient for
by N (¢, d) the maximum number of vertices in the intersectiofeconstruction of any real vector= (z, ..., x,) within Eu-

of the metric balls of radius around vertices: andy such that clidean distancé with error probabilitye, is reduced to a clas-
d(z,y) > d. The numbemN(¢, 1) + 1 equals the minimum sical statistical problem for the minimax estimate. In the case of

numberN such that anyV vertices in the metric ball of radius & Gaussu;:m channel, the optinfétreconstructor is defined by
¢ around any vertex suffice for exact reconstruction af The £(Y) = & 2;_1 ¥;, and, using thisv-reconstructor/V-tuple
property ofmonotonicity on intersectionis introduced and a ansmission of any: is equivalent to single transmission :of
sufficient condition so that a graph has this property is foungVer the same channel with variance divided¥yWe find the

This property allows us to easily calculate the valeg, d) asymptotic behavior aN(n, 6, ¢) for this channel.
for some graphs. Section V contains concluding remarks and open problems.

It is significant to note thaiV (¢, d)+1 can be treated as theSome results of the paper without proofs were announced in

minimum number of vertices in the metric ball of radiusuf- [15].
ficient for exactreconstruction of a vertex in a codeC V' of
minimum distancel. This allows us to consider and solve some
new problems of coding theory when the minimum distance of aWe denote byA? the set of sequences = (zy, ..., z,)
code does not allow one to correct errors of a given multiplicitgver the alphabetl, = {0, 1, ..., ¢ — 1}, ¢ > 2. We shall
In particular, for the binary Hamming graphi(¢, 2t—1)= (Qf). also use the notatian = z; ... x,, consideringz as aword of
This means that the minimum number of erroneous patterns siefagthn over the alphabeti,. Let A% = |J;Z, A7 be the set
ficient for reconstruction of any word of & — 1)-error-cor- of all words over4,. Every combinatorial channel will be char-
recting code of length, for the combinatorial channel with atacterized by a seff of one-to-one partial mappings; — A?.
mostt substitutions of symbols, is equal (L@’) + 1 indepen- This means that if. € H is defined onr, v € Ay andz # y,
dently of the length of the code. thenhi(z) # h(y). Elements ofH are referred to asingle er-
The problem of efficient reconstruction of an unknowmors. For anyt € {0, 1, ...} andx € A} denote byB;(x, H)
sequence at the output of a discrete probabilistic chaghelthe set of all wordg, € A7 which can be obtained from by

without memory is considered in Section IV. This consistat mostt of single errors fromH. (This means that there ex-

Il. COMBINATORIAL CHANNELS

of finding the minimum numberN«(n, d, ) of repeated ists an integes, 0 < s < ¢, wordszy, ..., 25, zs+1 Where
transmissions which are sufficient for reconstruction of amy = z, zs41 = v, and single errorsq, ..., h; € H such that
sequence of length within Hamming distancel with error h; is defined atz; andh;(z;) = #41 forany: = 1, ..., s.)

probability e. (The cased = 0 corresponds to exact recon-Given a setd of single errors, @ombinatorial(n, t)-channel
struction.) To estimateVo(n, d, ) we introduce and study is defined as a multiple-valued function which can map an ar-
reducibleN-reconstructors which have a remarkable propertpitrary (input) wordz € A7 to any (output) word from the set
N-tuple transmission of a message over a discrete memoryléssz, H). If V. C Ay and|B.(z, H) N By(z, H)| = 0 for
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any differentz, z € V, thenV is anerror-correcting coddor

the combinatoria(n, t)-channel and to find its maximum size
is one of the main problems in coding theory. However, in this

paper we consider another problem. Let

Nu(V, 1) = 1B, HY N By(z, H)).

g 2
ac,zgl{}:);;é ( )
It is clear that for eaclk € V', anyN = Ny (V, t) + 1 different
elements of the s&B,(x, H) allow one to uniquely recover.

On the other hand, (2) shows th&t = Ny (V, ¢) + 1 is the

Example 2.6 (Insertions):
H={hyT:a€cA,i=01..1}

where the single errar;” Tisdefinedonalk = z; - - -
such that: > ¢ and maps: to the worde; - - - z;a241 -
lengthn+1. In this casdH,,| = g(n+1).

xn € AY
-1, Of

Other types of single errors such as bursts and arithmetic er-
rors (see, for example, [18]) also admit a similar description.
In addition to determiningVy(V, t), it is also important to

minimum number having this property. It is worth pointing oufind a simple algorithm for reconstructinge V' from v dif-

that it is in general possible thaB,(x, H)| < Ny (V, t) for

ferentwordsyy, ..., yn in By(x, H)whereN =Ny (V, t)+1.

somez € V. Thus,z € V' can be reconstructed with the help ofrhe following definitions will be needed for that purpose. The
anyN differentelements oB,(z, H) if they exist. In this paper, compositionof a wordw € Aris

we shall determingVy (V, ¢) for differentH, n, V C Ay, andt.

Now we give examples of sefg of single errors and hence
the corresponding combinatorial, ¢)-channels. We shall use wherek;
a common name (for instance, substitutions or transp05|t|oq§)
for all elements of each sudd which is usually referred to as
thetypeof errors. The setél are in general countable, and we

denote byH,, the subset of all single errors éf which are
defined on at least one element4f.

Example 2.1 (Substitutions):
H={hitaec A\{0},i=1,2,...}

where the single errdr} is definedonalk =z ... z,, € Ay
such thatn > ¢ and replaces the letter; in = by the letter
x; +a mod q. In this case|H,,| = (¢ — 1)n.
Example 2.2 (Asymmetric Errors):
H={h7:1=1,2, ..}
and
H={hf:i=1,2,...}

where the single erroi; (h$) is defined on allz =

xy--xn € Ay such thate > 4 andz; < g—1 (z; > 0) and

replaces the lettet; in z by the letterc,+1 (x;—1, respectively).

In both cases|H,,|=n.
Example 2.3 (Cyclic Errors):
H={hti=1,2 ..}

where the single errak is defined on allz = =, ---z,, €
Ay, q 23, such that, > ¢ and replace the lettert; in = by the
letterz; &= 1 mod gq. In this casdH,,| = 2n.

Example 2.4 (Transpositions):

H=1{h ;:i,j=1,2,...,i<j}
where the single errdr; ; isdefinedonalk =z -- -z, € Ay
such thatx > j and transposes the lettersandz; in «. In this

case|H,| = n(n — 1)/2.
Example 2.5 (Deletions):

H={h®":a€A, i=12 .}

where the single errdr;” ~ is definedon alk =z - - - 2, €A}
such thatn > 4, z; = a, and mapsz to the word
-z, Of lengthn — 1. In this caseH,,| = qn.

Ty L1 Ty

k() = (ko(u), ..., kg-1(u)) ®3)

(u) is the number of occurrences of the letier A,
Theordered compositioof « is

(w) = (koo (u), ..., ko, , () (4)
where
6(u) = (6o, 61, ..., 6,—1) (5)
is a permutation ofi, = {0, 1, ..., ¢ — 1} such that
koy(u) > ko, (u) 2 -+ = ke, _, (u).

The last conditions need not uniquely determine the permutation
6(u) of A, but it will be uniquely defined if we additionally
require that, < 6; wheneverk,;(u) = k;(u), ¢ < j. With 6(u)

as defined above, we define thesjority functionm,: AY —

A, by

(6)

If a lettera € A, occurs inu more often than any other letter
thenmy(w) = «. We will also need thehreshold function
fr: R™ — A, (typically, m will be q or ¢t + 1). Given a vector
of thresholds = (g, 71, ..., Tm_1) € R™, we define
min{i € Ay, w; > 7}

()

The threshold functionf, (w) is well defined for all
, Wm—1) € R™ such that

f‘r(w0a w1, -y wrn—l) =

w = (wg, Wi, ...

m—1 m—1

sz>2n

=0

(8)

Note that ifw; > 7; holds for only on& € A,,, then f, (w) =1.
Note also that the majority function (6) can be expressed as
fo, ... o(l(w)) (with ¢ zero thresholds). As an example, for= 3
andu = 0211012 we havek(u) = (2, 3, 2), 8(u) = (1, 0, 2),
Z(U,) = (3, 2, 2), mg(u) = 1, fgygyl(k(u)) = 1, and
f3,2,1(1(u)) = 2.

In the sequel, given a séi of single errors we shall omi#/
in the notationB,(z, H). We assume that, », t are integers
(g >2,n>1,t>0)and put

J
E a; = 0,
i=l

if 7 <1
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and Theorem 2: For anyn, w, and¢
t) o .
<. =0 if ¢ <Ooré>t. 9) t—1
1 ’ N w—1 n—w-—1 1
N (.],w,t)_n;( : ) < p )z‘+1' (12)
A. Substitutions Iy, =y, Unjod =1,...,N =N°(J, t)+ 1, are
In the case whely = A? andH consists ofyn single sub- different words inB;(x) for somex = xy---w, € Jg, and
stitutions, the seB, () is the metric ball of radius centered at % = ¥i,1** "%, n, ¢ =1, ..., n, then
point.z of the Hamming spacd; (see Example 2.1). Set ©i = fry o ((u2)), i=1,....n (13)
N(AY, t) = Nu(A], 1) where
. . . ' : n—w n—w .o, .
in this case. The problem is to fil¥ (A7, ¢) and a simple al- To = (Jo,t) and 7 = —— N°(J, t).
gorithm for the reconstruction of € A} with the help of any _ _ "
differenty, ..., yn € Bi(z) whereN = N(A7, )+ 1. Proof:. Denote the right-hand side of (12) By°. Letz €

JI, z # z, be obtained fromx: € JI by a single transposition
hi,m. Considering four possible cases for these two positions
andm it is easy to see that

t—1
n n—1 i
N(Aq,t)=qz< ; )(q—l)- (10) |B,(z) N By(2)
= w1 n—w-—1 —(w-1
Iy = v Unjod =1...,N = N(AZ, )+ 1, are :22< i )( i )""Z( i )

Theorem 1: For anyn, ¢, and¢

different words inB,(x) for somex = 1 - - x,, € Ay, then =0 - =0
n—w-—1 w—1 n—w-—1
xizmq(yiyl,...,ym\r), 1=1,...,n. (11) < i+1 )‘FE%(L_'_]_)( i )

Proof: Let all letters of the wordss, z € A? coincide w1\ (n—w\ =7 w

except the first one. Then all words which have an arbitrary first = Z < i ) < i1 ) + Z <L + 1)

letter and differ frome (andz) in at mostt — 1 remaining places =0 =0

belong to the seB; ()N B,(z). This proves thalV (A7, t) is not . <” —w= 1) — N°.

smaller than the right-hand side of (10). The opposite inequality ¢

will follow from the proof of the second part of the theorem. Tarhs proves thatve(J, t) > N°. The opposite inequality will

this end, we note that forany=1, ..., nanda € Ay, a # i, follow from the proof of the second part of the theorem. To
the number of = v; -~ v, € By(x) such thaty; = a equals prove this part, we note that for any= ;- - -z, € .J;; andi,
> i—o (";")(g—1)’. Therefore, the letter; occurs more often ; — 1 ', the number ofy = v; - - v, € By(x) such that
than others among, , - - - y;, v and we can apply the majority ,,, + .. equals
function to findx;. O -

Thus, Theorem 1 determines the minimum number= Z < W ) <” —we 1) Yo
N(A?, t)+1 such thatV different words obtained from a word o\t ! n

x € AY b)_/ at most substitutions are always_sufﬂuent forits re¢ gi = 0, and equals
construction. Moreover, such a reconstruction can be performe

by applying the majority function to each row of the matrix Lt n— w n—w

Y = (4, ;). NotethatV = g+1andN = ¢(g—1)(n—1)+q¢+1 Z < i ) < i+ 1 ) = N°

fort = 1 andt = 2, respectively. A numerical example has been =0

given in Section I. if z; = 1. This implies that forN = N° + 1 the threshold
function (13) allows us to find; and completes the proof of the

B. Transpositions and Asymmetric Errors fact thatve(Jn, t) = N°. O

In the case whef’ C A7 andH consists ofi(n—1)/2single  Thys, Theorem 2 determines the minimum number=
transpositions, we puv°(V. ¢) = Ny (V, t) and note thatany oy 4y 4 1 such thatV different words obtained from a
z€ By(«) has the same compositionas Ay, i.e..k(z)=k(x), words € .J7 by at mostt transpositions are always sufficient
see Example 2.4 and (3). In particular, #r= Az each word o, jis reconstruction. Moreover, such a reconstruction can be
in B, () has the same Hamming weight. Therefore, itis naturgh formed by applying a threshold function to the composition
to consider the problem to find/°(J;, ) whereJj; consists ot each row of the matrig’ — (y:. ;). Note thatV' = n + 1
of all wordsz € Ay with w ones anch —w zeros. If we define 54 — n(w(n — w) —n + 3)/2"+ 1fort = 1andt = 2,
the distance between elements/gjfto be half of the Hamming egpeciively. A numerical example has been given in Section | .
distance (the Hamming distance is even in this case),khén) It is worth pointing out that any. + 1 words
is the metric ball of radiuscentered at point € J;}. This metric

space/,, is called the Johnson space. Yi =YL, YUn,js j=1...,n+1



LEVENSHTEIN: EFFICIENT RECONSTRUCTION OF SEQUENCES 7

obtained from an arbitrary = x;---z, € A7 by at most or, respectively,
one transposition are sufficient to reconstruct thisand hence

N°(Ay, 1) = nforanyq > 2. In this case, we know the com-
position ofz (it coincides with that of all;;) and can reconstruct

z; =y 1&y; 2& - - &y N, i=1,...,n.

z as follows: The proof of Theorem 3 is a simple modification of that of
_ i . 14 Theorems 1 and 2. In these cases, to reconsiruet./;, one
i = Jro, i g (R(u)), t=1...,n (14) can apply conjunction or disjunction to each row of the matrix

whereu; = Yi, 1 Yo, n+1 and Y = (yi7j)'

T = ki(x), {=0,...,g—1. C. Deletions and Insertions

It follows from the fact that the number af = v, ---v, €  Inthe case whel = A7 andH consists ofyn single dele-
Bi(z) such thaty; = a € A? anda # ; equalsk,(z). Note tons andy(n + 1) single insertions (see Examples 2.5 and 2.6),
that, in general, application of the majority function to all row&he setB;(z) is the metric ball of radiuscentered at € A7 in

is not suitable in this case.
Example 2.7: Let the columns of the matrix
001112 2 2

2000001 2
11211101
1 112 1111
22 2 2 21 20
0 200 0O0O00O0
1111 2 2 11

the deletion/insertion metric introduced in [12] (see also [14]).
Since the length of words d8;(x) varies fromn — ¢t ton + ¢,

we consider separately the case of exatttleletions and the
case of exactly insertions. Let

Dt(l’) = Bt(.’l') n Agit It(.’l') = Bt(.’l') n Ag+t. (15)

It is obvious thatD,(z) is the set of all words obtained from
x € A} by deletion oft letters (subsequences of length- ¢)
and I;(x) is the set of all words obtained from € Ay by
insertion oft letters (supersequences of length- ). We shall

be obtained from an unknown € A7 by at most one transpo- show how to find

sition of two symbols. Any column allows us to determine the
composition ofz : k(z) = (2, 3, 2). Using (14) we find that

x = 2011201.
Consider asymmetric errors
H={h7:i=12, ...}
and
H={hf:i=1,2,...}

(see Example 2.2) for the skt = J;; and denoteVy (J7, ¢)
for these types of errors by~ (J7, t) andN<(J©, t), respec-

u u?

tively.
Theorem 3: For anyn, w, andt

NS, ) = ti <w;1)

1=0
A n—w-—1
> n _ - -
N(Jw,t)_zg< . )
If different 4, ..., yn belong toB,(x, H) for some

T=a1 Ty € S

N=N7(J't)+1

or
N=N<(Js, t)+1
and
Yj =YL, Y2, - YUn, js Jj=1L...,N
then
Ti=%1Vyi2V VY N, i=1,...,n

Ny (n, t)= acgclilijxx;éz | Di(x) N Dy(2)| (16)
and
+ _
N[ (n,t)= x,zé?{%);(x#z |1 (x) N (%)) a7)

Moreover, we shall describe simple algorithms that recever
Ay with the help of anyN, " (n, t) + 1 different elements of
D (x) (if they exist) and with the help of any."(n, t) 4 1
different elements of,(x) (we verify that such a number of el-
ements always existifi(x)). The detailed proof of these results
is omitted here, it will be published in thivurnal of Combina-
torial Theory.

For any nonnegative integersandt define

Dy(n, t) = max |Dy(z)|.
zCAY

It is useful to assume thd, (n, t) = 0 for any integers: andt
suchthat < tort < 0 and to extend the definition d,(n, t)

to the casg = 1 whenA, = {0}. In this caseD,(n, t) = 1 if

n > t > 0. As was mentioned in [4] (with the reference to the
report [3]) Calabi proved that

gq—1

D’I(nv t):ZD’I(n_i_lvt_i)v
=0

whenn >t > 0.
(18)

Recently, Hirschberg [10] found a recurrenceqry > 2, for
computingD,(n, t), namely

Dyn.t) =y <n;t>Dq_1(t, t—d).  (19)

t
1=0



In particular
Da(n, t) = 2; <”i‘t>, |
Da(n, ) = t()(”f)i)(i) (20)
i= =

The formula forg = 2 is due to Calabi [3].
One can show that for any, ¢,andg, n >t > 0,¢ > 2

g—1
= ZD
=1

Using (18) we have that fat > ¢ + 1
N (n,t) =Dg(n, t)—Dg(n—1, 1)+ Dy(n—2,t—-1) (22)

q
and forn > t+2

q—1
Ny(n,t)=> Ny(n—i—1,t—1i).
=0

From (19) and (22) it follows that

(n—i—1,t—i)+Dy(n—2,t—1). (21)

Ny(n, t

(23)

t—1

=3 (

=0

n—t—1

N t—e—1

; ) Damstt, i+ Dyma=1,0)
(24)

and one can use (19) and (20) to calculie(n, t). In partic-
ular

t—1
N;(n,t)=22<”‘f‘1) (25)
=0
N (n-t-1\ 'S (i1 i
weo=2 () S ((5)+0))
=0 j=0 J
J
N (n,0)=0 Ni(n,1)=2
N7 (n,2)=2n—3-16
N, (n, 3) =(n—2)* = (30 — 10)64,2 — 64,3 (26)
whereé;_; is the Kronecker symbol. Since
Dyt i) < (g = 1)

(24) also implies (1).
Now we describe aalgorithm for reconstructiorof an un-
knownz = 1 ---x, € A} when we know a set

{yla LR yN} - Df(x)

(i. e., IV of its different subsequences of length- ¢) where
N = N (n, t)+1andn >t > 1. Note that in this case in fact
n > t+ 1, since
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andN; (t+1, t) > |D,(z)| for anyxz € AL+, The algorithm
consists in successive application of threshold functions to the
ordered composition of the first rows of the matrices formed by
erroneous patterns. At any step, the first letter and al$o<
7 < t, deleted letters of the unknown wosdare determined,
and the problem is reduced to a similar analysis of a submatrix
with a smaller number of rows.
We shall consider the words

Yi =YL Y25 s Unetyy T =1.. N

as columns of a matriX” of size(n — ¢) x N. Foranya € A,
denote byY, the submatrix oft” formed by all of its columns
whose first letter isz and byY, the submatrix ofY, which
is obtained by removing the first row &f,. For the first row
u=Yy1.1Y1,2 --- y1, 5 Of Y find the permutation

Q(U,) = (90, 91, ey 9(1_1)
and the ordered composition
W) = (koo (), ..., ko, (1))
of u (see (5) and (4)). Consider the thresholds
=N (n—i—11t—1), 1=0,1,...,q—1 (27)
and note that due to (23) the threshold functfon -, ... ~,_, is
defined onl(u). If f7, -, .. +,_,({(w)) = j,then0 < j < tand
377;:97‘,_1, fOI’iIl,...,j+1. (28)

Inthe casg =t the submatn)Y’ consists of the unique column
Zjy2 +++ xn, and the reconstructlon af is completed. In the
casej < ¢ all columns ofYy belong toD;_;(z;42---2x)
and their number exceedé, (n—1—j, t—j), and hence the
problem is reduced to that of reconstructing the wofd=
Tjy2 - xy, Of the smaller lengtm—j—1 from N~ (n—j—1,
t—j)+1 of its different subsequences of lengtht—1 (obtained
from z/ by t—j > 1 deletions).

Thus, the first letter of is recovered with the help of appli-
cation of the majority function to the first rowof the matrixy”,
sincex; = 6y = m,(u). We then go to analysis of the largest
submatrixY, only if Y, is too large or precisely if the number
of its columns exceeds the threshdig (n — 1, ¢). Otherwise,
we need to investigate the smaller subma}fgxwherej is de-
fined as above so as not to lose the requwed informatian.on

Example 2.8:Letg=3,n=7,t =3, N; (7, 3) = 24, by
(26), and 25 columns of the matrix at the bottom of this page be
subsequences of a certain= z1 -+ - 7 € AZ,. For the first row
u € A3® of the matrix we haveéyg(u) = 8, k1(u) = 4, ka(u) =
13, and hencé(u) = (2, 0, 1) andl(u) = (13, 8, 4). Since
To=N;(6,3) =157 =N; (5,2)=7,179= N3 (4,1) =2,
we havef,, -, -, (I(u))=1.Hencer; =6y =2,z =6, =0,

N, (t+1,¢)=min(t +1, g), fort > 1 and the problem is reduced to reconstructign - -x; € A3
222222222222 20000O0000O001111
oooo0000O0111121111122¢902727230Q0
11122 2002 200022 20000200 2 2
012012120112 10121?21?211?321:1
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from N5 (5, 2) + 1 = 8 of its subsequences of lengthwhich
are columns of the following matrixy:

111112 20
22 2 00 00 2
0121 21 21

Now for the first rowu € A$ of this matrix we haveé(u) = 1,
k1(uw) = 5, k2(u) = 2, and hencé(u) = (1, 2, 0) andl(u) =
(5,2, 1). Sincero = N3 (4,2) = 5,71 = N3 (3,1) = 2,

= N5 (2,0) = 0, we havef,, -, ~,({(u)) = 2. Hence
z3 =0 = 1,24 = 801 = 2,25 = 62 = 0.1n this case,

j =t = 2 and the last column determines the remaining lettefs1, - -

z¢ = 2, x7 = 1. Thus, we finally haver = 2012021.

sinceN(j(n, 0) = 0. Note that forn > 1,¢ > 0

t
n—1 +L i _
It 0= N =3 (") - 1 - 2
=0
which can be proved by induction et ¢ with the help of (32)
and (35). It follows that

[(z)| > Nf(n, 1), foranyz € A}, n>1,t>0. (37)

Now we describe aralgorithm for reconstructionof an
unknownz = x1---x, € Ay with the help of any set
., yn} from N = N}(n, t) + 1 different elements of
Ii(x) (i. e., its supersequences of length-¢), n > 1,¢ > 1.
We consider the words

Considering insertions we first should mention the surprising

fact that|/;(x)| does not depend on € A} and

[Li()] = Lq(n, t),

t0<n+t> _y.

This result was published in [13] fgr= 2; the extension to the
general case is immediate. We shall also assumé jtat t) =

foranyz € Ay (29)

where

(30)

7

Yj = UL, 5Y2,5 " Yn+t, 5> 7:177N

as columns of a matriX” of size(n + ¢) x N. For anya € A,
andi = 1, 2, ..., n + t, denote byY, ; the submatrix oft”
consisting of all columng;; = w1 jy2 ;- Yntt,; SUCh that
y;, ; = alis the first occurrence of the letteiin the wordy;, and
denote b%yi asubmatrix o, ; which consists of all different
columns obtained fror;, ; by removing the firsi rows. Note
that if |{/| denotes the number of columns of a mafrixthen

Y7 il = [Ya,il(g = D)7

0 for n > 0 andt < 0, and that agrees with (30) (see (9)). Since

foranyz =z 2z, € Ag
Li(z)=z1L(zy - 2p)U U aly_1(xy--z,) (31)
a€A\{z1}
(hereal = {# = au: v € U} foranya € A, and any

U C Aptt=1), this fact can be proved by induction an+- ¢

For anyb € A, consider the vectow(b) € R'*! defined as
w(b) = (wo(b), -, wi(b)), ¥s,iga]-

It is clear that

wherew;(b) =

=Nf(n,t)+1

Yt

(38)

(n > 1,t > 1), and (30) can be easily found by calculation of

|Z:(0™)]. Note that from (31) it also follows that far > 1

In,t)y=I;(n—-1,¢)+(g—1)I;(n, t - 1) (32)

and hence
t

=> IL(n—1,t—i)(g—1)

=0

I(n, t) (33)

becausd,(n, 0) = 1 for anyn > 0.
One can show that for any, ¢,andg,n >t > 0,¢ > 2

t—1
=3 (") - a- 0. e
1=0
Using
<n+t> <n—|—t—1) <n—|—t—1)
)= . +
7 7 1—1
we see that fon > 1
N;—(TL, t)IN;—(TL—l, t)—i—(q—l)N;—(TL,t—l) (35)
and hence
Nf(n, t)= ZNj(n —1Lt—d)(g— 1) (36)

=0

for b = ;. In the case when there exidtsc A;, b # w1,
for which (38) also holds (and hence thimccurs among the
first ¢ 4+ 1 positions of any column of’), one can show that the
number of columns in which the first occurrencergfprecedes
that of b is larger than|Y'|/2. This allows us to finde; with
the help of the first + 1 rows of the matrixY". Consider the
thresholds

= Nf(n—1,t=9)(g- 1), (39)
and note that due to (36) and (38) with= z; the threshold
function fr, -, - is defined onw(z;) € R*L.If

f7'077'1,~~~ Tt(w(xl)) :1

then0 < j < t and the set’,,, ;41 contains at leas,f (n —

i=0,1,...,¢

1, t—j)(q — 1) +1 different columns and hena¢ ;. , con-
tains at least
+ i
Nf(n—1,t—j)+1
different columns each of which belongska ;(x- - - ). In

the casgi = ¢, Y, .., consists of the only cqumm2

and this completes the reconstructionrofn the casd < j <
t, we determiner; and reduce the problem considered to
reconstruction of’ = x5 - - - z,, from anyN;f(n -1, t—5+1
different words of the sek,_; (xs - - - x5,).

the
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Thus, the first letterz; of = is recovered with the help of the graph, we consider a special representation of a graph based on
first ¢ + 1 rows of the matrixY". In general, this letter differs the description of its path metric with the help of a #ftof
from the letter obtained by applying the majority function to theingle errors which are partial one-to-one mappings on the set
firstrowof Y. The numbey = ., ... ~(w(z1)),0<j <¢, ofvertices. We show that this approach does not lose generality.
is equal to the number of inserted letters. In order to findve  On the other hand, many types of errors of essential interest in
need to investigat&; ., and so on. Note that (34) impliescoding theory imply the natural description of the corresponding
that V" (n, 0)=0, N ( 1)=2, N} (n, 2)=2(q—1)(n+2). graphs. Moreover, this approach allows us to formulate a suffi-
cient condition for a graph to be monotone on intersections. We
use this condition in order to find solutions of the extremum
problems for some types of single errors.

Example 2.9:Let g = 3, n = 3,t = 2, and hence
NF(3,2) = 20. Consider the following matrix” (see the
bottom of this page) derived from 21 supersequences of @Al
unknownz = zizaxz € A3 We havew(0) = (9, 2, 5),
w(l) = (9, 2, 1), w(2) = (3, 14, 4), and see that (38) holds
only for b = 2, and hencer; = 2. Sincery = 16, 7 = 4, LetI' = {V, E} be a graph with a finite sét of vertices and
9 = 0, we getfi 4 0(w(2)) = 1. The matrixYs » has 14 a setF of edges which are unordered pairs of distinct elements
columns and’; , has seven different columns each of which i§f V. We denote by(z, y) the path metricof I, equal to the
obtained fromrox3 by a single insertion. However, for furtherminimum number of edges in a path joiningindy. We do not,

reconstruction, it is sufficient to use afy; (2, 1) + 1 = 3 of ingeneral, assume thiis a connected graph and putz, ) =
them, for instance oo if  andy belong to different components. We denote by

s = s(I') the maximum ofp(x, y) over allz, y € V such that

A. Reconstructing Vertices of a Graph

0 01 there exists a path joiningandy. This is calleddiameterof I in
110 the case of connectdd Foranyr € V andi, i =0, 1, ..., s,
1 21 we consider thenetrical spheres of radius

Now we havew(0) = (2, 1), w(1) = (1, 2), w(2) = (0, 0), Si(x) ={y:y €V, p(x, y) =4} (40)

and there exist two lettetsand1 for which (38) hold. However,
the first occurrence ol precedes that of in a larger number (centered at) and themetrical balls of radiug
of columns and hence, = 0. Then we conclude that = 2,

71 =0, f2,0(w(0)) = 1, andYj , consists of one letter; = 1.
Thus,z = 201. Bi(z) = S;(@).

Ill. GRAPHTHEORETICAL APPROACH TORECONSTRUCTION  Thedegreer = r(I) of a graphl” is the maximum of5, (z)|
OF SEQUENCES over allz € V. A graphl' is calledregular of degreer if

|S1(z)] = rforallz € V. Foranyi, j € {0, 1, ..., s} and
The considered combinatorial problems of efficient recon: . ¢ v, let '

struction of sequences can be reduced to some extremum prob-

lems of reconstruction of vertices of graphs using the minimum pi.i(x, y) = |Si(x) N S;(y)]. (41)
number of different vertices in their metrical balls of a restricted

radius. The problems of exact reconstruction of a vertex and @®nnected graphis for which values (41) depend only @ny,
reconstruction with a preset accuracy expressed in terms of #8mlp(x, ) are calleddistance-regulaf=or such graphs, we de-
path distance of a graph are given. We introduce the properntytep; ;(z, v) bypﬁj if p(x, y) = k. There exists a one-to-one
of a graph to be monotone on intersections. This property otarrespondence between distance-regular graphs of diameter
graph allows us to find solutions of the problems in terms @nd symmetric association schemes wittlasses [5]. Arau-
parameters of the graph. Given numbeif possible errors, the tomorphisnmof a graphl” is a permutatiory of the vertex set’
problem of reconstruction of arbitrary vertices within distanceuch that(z, y) € FE if and only if (g(z), g(y)) € E. For any
p is close to an exact reconstruction of vertices belonging taray € V' and an automorphism, p(z, y) = p(g(x), g(y)). A
subset of vertices (code) with the minimum distaBpe- 1 be- graphI' is calleddistance-transitivéf for any z, y, z’, ¢y € V
tween its different elements. This gives rise to new problems feuch thap(z, v) = p(2/, /) there exists an automorphisnof
p-error-correcting codes when the numbesf possible errors [ for whichz’ = g(z), ¥/ = g(y). Distance-transitive graphs
exceedw. Although these problems make sense for an arbitraaye distance-regular.

0ooo0oo0o0000011111111122 2
012222 222¢012222222201 2
2200100022 200100027222
0o0o11o02100O0O0110210000O00O0
1112110111111 211011111
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For a grapH’, we define some functions of interest for prob- The valueN(V; ¢, d) + 1 is also relevant for exact recon-

lems of reconstructing vertices. Forany:, d € {0, 1, ..., s}  struction of vertices in a cod€ C V of minimum distance
put .
d(C) = min z, y). 46
(@) w}yecjx;&yp( Y) (46)
L(V;t) = max | Bi(2) N By(y)] (42)
z,yCVop(e, y)=k Lemma 2:For anyt, d € {0,1,...,s} and any code
C C V such thatd(C) > d
and
M(C;t, 0) < N(V;t,d)+ 1 47
NVt d) = d%lﬁ?s L(V5 ). (43) with equality for some codes (for a sufficient condition of

equality see Lemma 3).

The last value is equal to the maximum number of vertices Proof: Inthe trivial casel > 2¢+1 we haveN (V' t,d)=0,
in the intersection of two metric balls of radigswith cen- M(C;t,0) = 1, and any vertex of3,(z) allows one to exactly
ters at distance/ or more one from the other. In particularreconstruct: € C. By the definitions ofN(V; ¢, d) andd(C),
N(V;t, d)y=0ford > 2t + 1. foranyY C V such thalY| = N(V;t,d) + 1 there exists at

The numberV (V; ¢, d) will be significant for the following most one vertex € C with Y C B,(«). This implies (47). On
problem: Given a cod€’ C V (any subset ol’), and0 < the other hand, there exist y € V such thatB,(z)NB,(y)| =
p < t, what is the minimum integed = M(C5 ¢, p) such  N(V; ¢, d) andp(z, ) > d. Therefore, if these andy belong
that for eachr € C, any M vertices inB; () (“erroneous pat- to a codeC, then one cannot exactly reconstruct a vertex’of
terns ofz”) suffice to recoverr within distancep (or exactly when knowingy” = Bi(z) N By(y), and hence{(C;t, 0) >
if p = 0)? Formally, we define\/(C; t, p) as the minimum N(V;t, d). O
integer M such that for any se&t C V of size M there ex-
ists » € V satisfyingp(z, z) < p for everyz € C with
Y C By(x) (if such z exists). Such a numbée¥ always ex-
ists under the assumption thBt(x) and B;(y) are different

For calculation ofN(V; ¢, d) we use a property of graphs
which reflects our intuitive expectation that(V; t) must de-
crease with increasing. A graphl is calledmonotone on in-

for differentz, y € V. We also assume that is not con- tersectionsfforany, ¢ =1, ..., s the valuely(V; t) does
tained inB3,(z) for anyz € V. Under these assumptions< notincrease wittk, £ =1, ..., s. If I' has this property, then
M(C; t, p) < maxgey |Bi(z)|. Note thatM (C; ¢, ¢) = 1 for t ot
anyC C V, since in the case = t any element ot” C B,(z) N(Vit, d) = La(Vit) = max ZZPi,j(% )
can be chosen as permissible approximation. TV Pl =i
First we consider the main caée= V. However, we shall see that there exist “very symmetric” (in par-
Lemma 1: For any integerg andp, 0 < p < ¢, 2p+ 1 < s tictular, distance-transitive) graphs which do not have this prop-
erty.

(44) Using the arguments of the proof of Lemma 2 we get the

M(V;t >NVt 2 1 1 .
(Vit,p) 2 NVt 20+1) + following statement.

with equality wherp = 0 or p = ¢. Lemma 3: If a distance-regular grapgh = {V, £} is mono-
Proof: The casep = t has been considered. By the deftone on intersections then

inition of N(V'; ¢, 2p + 1), there existz, y € V such that t ot
plz,y) = 2p+ 1 and|By(x) N Bi(y)| = N(V; ¢, 2p + 1). NVt d)y=> > p}; (48)
ForY = B;(x)N B(y) this contradicts the existencenk V/, i=0 j=0

for which p(z, z) < pandp(y, z) < p, and gives (44). On the and for any code’ C V' such thatl(C) = d
other hand, ifY'| > N(V;¢, 2p+1)+1 forsomeY C V, then -

the distances between differene C with Y C B, () (if they M(C;t,00=N(V;t, d)+ 1.
exist) are not greater thap. Therefore, fop = 0 there exists
at most one such, and we have equality in (44). L' B. Graphs with Error Metric
Thus The metric approach to the problem of efficient reconstruc-
tion of sequences for different types of errors gives rise to
MWV;t0=NV;t,1)+1 (45) the natural definition of a class of graphs including Cayley

graphs. Letl” be a finite (or countable) set. Consider a &bt
is equal to the minimum number of vertices in the metric ball af one-to-one, in general, partial mappings— V which are
radiust with the center at an arbitrary € V' that are sufficient referred to asingle errors.This means that for any single error
to exactly reconstruct this vertex. Note that, in general, forlrac H andz, y € V, z # y, we haveh(z) # h(y) if his
setW C V with pairwise distances 2p one cannot guaranteedefined on: andy. We assume that andH have the following
the existence of a vertex € V such thato(z, z) < p forall property: ifh € H is defined one € V andh(z) = y € V,
2 € W. Nevertheless, one may expect that for some graplisen there exists € H which is defined orny andg(y) = «.
in particular, for the Hamming and Johnson graphs, equality We will write this property asd (V) = H~ (V). Note that
(44) takes place for ap. H(V)=HY(V)holdsif H = H!,i.e.,h € H if and only
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if h—1 € H.However, we will verify that this is not a necessary
condition forH(V) = H~*(V) to hold. A single erroi € H
is called aninvolutionif A~ = h. In particular,H = H!
takes place ifd consists of involutions. If a single errére H
is defined on allz € V, thenh is simply apermutationof
V. Let us construct a graphy = I'(V, E) with the setV of
vertices and the séf of edges, wheré¢z, y} € E if and only if
x#y and there exists € H such thaty=/z. Here and in what
follows, hx stands forh(x). The propertyH (V) = H=*(V)
implies the crucial fact that the path metp¢z, v) on Ty is
equal to the minimum number of single errors transforming
to y if there exists a chain of such mappings,corotherwise.
We calll’ ; agraph with error metrigof type H).

Fig. 2. The Petersen graph.

(z,y) € Fifandonly ifz € By(y, H) ory € Bi(z, H), then

Note that the definition of' 5; does not depend on whethetVe can show that the path metric of the grdph = I'(V, £)
haz — = or h is not defined on:. Therefore, one can assumédualsmin( + j) where the minimum is taken over alland
without loss of generality that for arly € H there existss € 7 SUCh that there exists € V' for which » € B;(z, H) and

V such thathz # =. It is in general not true that if we put”? € Bj(y, H). In particular, for the setsf of asymmetric

hz — x for eachz € V whichh € H is not defined on, we €770rS OM; (Example 2.2) itis not true thaf (V') = H~(V/).
obtain a permutation of . On the other hand, any single errof IOWEVer, in both cases the parallelo%ram property holds, and
h € H,which is a permutation df, can be given by a product V& 96t the same gradhy; on the set4. In Section II-B for

of cycles of lengtt2 or more (with omitted cycles of iength one). 1S 9raph we have, in fact, found

In particular, the Petersen graph in Fig. 2 is a grEphwith the max  |Bi(z) N By(2) N J|

setH of four single errors (involutions): %, 2CI0; etz

(01)(23)(57)(69), (12)(34)(68)(79), Wf}fre;f = L{é‘;(t) Jr and{ = U%Ew 7 rersgfcg\gelyjth
. . n important class of graphBgy = ) with error
(0)(16)(27)(58), (05)(38)(49) metric is obtained whel is a finite group, a subsdi® C V
containsh~! if h € H°, and H consists of all left (for def-
initeness) multiplications of elemenfg® by elements ofV.
(01234)(57968), (04321)(58697), (05)(16)(27)(38)(49). We shall not distinguish elements &f and #° and shall write
H = H°. Inthis caseH = H~! and all single errors off are
In both cases we havl = H~!. permutations o. They all are automorphisms ofy if V' is
The construction of the grapligy = I'(V, E) with V = A7 an Abelian group. A graph; = I'(V, E) with Abelian group
can be used for many typg$ = H,, of single errors consid- V andH C V is referred to as aAbelian graphMany types
ered in coding theory (see also [12], [13], [18]). In the cag®f errors, such as substitutions, bursts, cyclic, and arithmetic er-
H(V) = HL(V), the setB;(z, H) defined in Section Il co- rors, give rise to Abelian grapts; .
incides with the metric balB;(z) in I'. In particular, for the  Itis worth pointing out that any grapgh is a graphl’y with
setH = H,, of substitutions (Example 2.1) and cyclic error&rror metric. For instance, we can consider each edgjeasfan
(Example 2.3) we havéf = H~! and obtain graphs with involution which is defined only on two vertices and permutes
the Hamming and Lee metric, respectively; for= .J7 and them. It is, therefore, of interest to minimize the size of a set
the setd = H, of transpositions (Example 2.4) being invo- of single errors for which a graph coincides withl';. It is
lutions we also havéd = H~! and get the graph with the clear thatiH| > » for any graphl’ of degreer. In the sequel,
Johnson metric. In Sections 1I-A and 1I-B we, in fact, calcuwe consider finite graphk.

lated N(V; ¢, 1) = N;L,(V2 t) for th_ese cases. For the union | amma 4: Any graphl" of degree- is a grapH"; for a setd
H (countable set) of deletions and insertions4n(Examples consisting of- + 1 involutions. There exist graplisof degree-

_ g1 e
2.5 and 2.6) the property = H " is also satisfied, and the hich cannot be represented as graphsor a setd consisting
graphI'sy generates the deletion/insertion metric 4p [12]. ¢ . involutions.

Anya: € A; belongs to the range ofdefini'tion of afinite numbgr Proof: A graphl' = ['(V, E) coincides with a grapk ;;

of single errors: € A and hence all metric spheres (40) are fighere 7 consists ofm involutions if and only if there exists

nite for this countable graph. In this case, we have found a partition ofl" into m subgraph€'(V, E;),i = 1, ..., m, of

degree one. This reduces the problem under consideration to the

known problem of coloring edges of a graph using the minimum

numberm of colors letting the colors of any adjacent edges be
The restrictionH(V) = H~1(V) in the definition of different. This problem for a graph of degreewith parallel

I'y = I(V, E) can be weakened. Let the followirngaral- edges was solved by Shannon in [21]. He proved that

lelogram propertyhold: for anyz, y, = € V andh, g € H |3r/2] and showed that this bound is tight for any> 2. For

such thate = hz, y = gz there existz’ € V and#/, ¢ € H the class of graphs without parallel edges that we are interested

for which 2/ = W'z, 2/ = ¢'y. If forany z, ¥ € V we put in, the problem was solved by Vizing in [23]. He proved that

or with the setH of three single errors:

NF(n,t)= max |By(x)N By(z)N AZ:Ft|.

z, ZEAZZ’“; THz
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if g is a permutation of” without unit cycles. From the defini-
tion of single errors and the property(V) = H—*(V) it fol-
lows that to prove the lemma it suffices to show that, for any reg-
ular graphl’(V, E) of degreer, the directed graph(V, E) is
partitioned into- directedl-factors. The following elegant proof
of this fact, which is valid both for even and oddwvas proposed

by A. Brouwer in a discussion of the problem. Thipartite
doubleof T" = I'(V, E) (see [2]) is the graph’ = T/(V’, F’)
where

V/ — {.T(a): T € ‘/7 ac {07 1}}

Fig. 3. A regular graph of degreéewithout 1-factors and{a:(“), y(b)} c E'ifand only if {% y} c E anda £, T
is a regular graph of degreethenI” is a bipartite regular graph

m < r+1and, forany- > 2, constructed graphs of degree of degreer and, hence, there exists a partitionldfinto r reg-

for which this bound is attained. O ular subgraphs of degree oriefactors)[” = I'(V’, E/), i =

The graphs in Figs. 2 and 3 are examples of regular graghs - - ” (S€€, for instance, [9], [16]). Define directed graphs
of degree3 which cannot be represented as graphswith L (" E )1 =1, o788 follows:(z, ) € E; if and only if
three involutions. However, we have verified that the Peterséﬁ( ) yWYe E The construction used implies eV, E),
graph is a grapﬂ“H with a setH of three single errors such? =1 ---» 7, form a partition ol (V, E) and eacl'(V, E;) is
that H = H~!. Is it true that any grapl’ of degreer isa 2 directed-factor onV. -

graphl'y for a setH of r permutations such thdf = H~'?  Thus, any graplf’ can be considered as a grapj with the

To obtain an answer to this question, we present some fagifinimum number of single errors, which is equal to the degree
Let a regular grapl' = I'(V, E) of degreer be a grapi’y  of T.

with the setH of » single errors such thaf = H~!. For any

h € H consider the set;, = {{z, y} hz = y} and note C. Monotonicity on Intersections of Graphs with Error Metric
thatE;, = Ej,-1. Inthe caséh # h=1, I'(V, E},) is a regular
subgraph of" of degree two (og- factor) if and only ifh is a
permutation oft” without unit cycles and cycles of length two.
In the caseh = h—1, I'(V, E}) is a regular subgraph df of
degree one (oi-factor) if and only if~ is a permutation oV Lemma 6: Given a setH of permutations of a finite sét
without unit cycles. On the other hand, by the Petersen theoreach thatH (V) = H~!(V), the graphl'y = I'(V, E) with
(see, for instance, [9]), any regular graph of even degree error metricp(z, y) is monotone on intersections if, for any
partitioned intor /2 2-factors. Since any graph can be converted € H andz, y, » € V, the equalitiep(x, hy) = p(z, v) — 1

to a regular graph of the same degree by adding vertices aml p(hy, z) = p(y, 2) + 1 imply

edges, these arguments show tuay graphl’ = I'(V, E) of . ]
degreer can be represented as a grdjph where| H| = » and __') plha, hy) = p(@, y);

H = H-'if and only if 7 is even orr is odd andl’ has a 1) »(y, hz) = p(hy, 2);

subgraphl’(V, Ey) of degree one such th&(V, E\Ey) has i) p(z, hz) < p(z, 2) if p(z, 2) = p(y, 2).
degreer — 1. In particular, the regular graph of degrgen
Fig. 3 cannot be represented as a griphwhere|H| = 3
andH = H~! since it does not havé-factors. However, the
following statement implies that it is still a graph; with three
single errors (for whichHf # H~1).

Lemma 5: Any graphl of degree- is a grapH’; for a setH L N

consisting of- single errors and, in particular, epermutations Z Zpi’j(x’ hy) 2 Z Zpi’j(x’ v)

(without unit cycles) of vertices in the case of regular
Proof: By the above-mentioned facts, it is sufficient td_et there exist € V such that

prove this statement for a regular graph= I'(V, E) of odd

Now we prove a sufficient condition for a graph with error
metric to be monotone on intersections. This allows one to find
the valueN(V; ¢, d) for some types of single errors.

Proof: Let for givenk > 2 andt = 1, ..., s the max-
imum I, (V; ) (see (42)) be attained at y € V, p(z, y) = k.
It is clear that there exists € H such thap(z, hy) = k& — 1.
To prove the lemma, it is sufficient to check that

=0 =0 =0 =0

degreer only. Denote byl = I'(V, E) the directed graph for z € Bi(x) N Bi(y)
which (z, y) € E ifand only if {z, 4} € E. A directed graph but
[(V, Ey) is called adirected1-factor (on V) if forany z € V 2 ¢ By(z) N By(hy).

there exists a uniqug € V, y # z, such that(z, ) € Ey

and a unique: € V, z # z, such that(z, ) € Eo. (Any di- It is possible only ifp(z, 2) < t, p(y, z) = t, andp(hy, z) =
rectedl-factor consists of disjoint directed cycles of length twé+ 1. Then, considehz and note thap(hz, hy) =t by prop-
or more which covel/.) For any permutation of V, consider erty i), p(y, hz) = ¢t + 1 by property ii), ando(z, hz) < ¢t
the directed graplﬁ(V E, y) Where(z, y) € E, ifand only if by property iii). This means thatz € B.(x) N B:(hy) but
y = gz and note thal(V, E,) is a directed -factor ifand only %z ¢ B;(z) N B:(y) and completes the proof. O
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Corollary 1: The Hamming grapl’'y; = I'(Ay, E) where satisfied. Assuming(z, y) = d, p(z, hy) = d — 1, and
H consists of al{g — 1)n substitutions is monotone on inter-p(hy, 2) = p(y, 2)+1, we shall show thai(z, hz) < p(z, 2).
sections and for any, ¢, t, andd (d < 2t) Then we shall apply Lemma 3 to calcula¥ J”; ¢, d), since
d the Johnson graph is distance-regular. Let {1, ..., n} and
2 —{icT p. — _

Nt d) = <”;d>(q_1)i I, ={jel:x 1}foran_ya: (1, ..., xzn). Then
L. NI =w—d
t—e t—
X
k=d—t+il=d—

i <Z> <d?k>(q‘2)d_k_l' " LN (L) = [, 0 (I\L)] = d

e and henceh transposes one element bf N (I\I,) with an
element ofI, N (I\I,). Since this transpositioh applied to
t— %1 ‘ z increases its distance frog it must transpose one element
B n—d\ <X /4 of I, N I, N (I\I,) with an element of I\I.) N (I\I,) N L.
N(Az;t, d) = Z < g ) Z <k> However, in this case the action fon » decreases its distance
0 h=d—tti from . In order to calculatéB, (x) N B,(y)| put

o [L.NIL,N{I\L)| =a
N(A3; ¢, 2t) = N(Ag; £, 2t — 1) = < . ) . (49) 1.1, N(I\L)| =b

Proof: Use Lemma 6 to prove that the Hamming graph is [0\ U L)) =

monotone on intersections. Let for a substitutighe H (see andnotethatl. NI, NI |=w—a—0b—4,d(x, z) =i+ b,
Example 2.1p(x, hy) =p(z, y)—1 andp(hy, z)=p(y, z)+1. andd(y, z) = i + a. This implies the formula above. O
Thenz; = 4; + @ mod ¢ andz; = v;, and the properties i)—iii)
hold. Since the Hamming graph is distance-regular, we can us
Lemma 3 to findV(A7; ¢, d) by calculating B (z)N B:(y)| for
any pointse, y € Ay such thap(x, y) = d. Givenz, y, z in
Ay, denote by the number of positions whereandy coincide
but differ from z, denote byt the number of positions where
and z coincide but differ fromy, and denote by the number
of positions where: andy coincide but differ frome. If 2z €
Bi(x)NBy(y),then0 < i <n—d,0 < k+l<d,d—k+i <4,
d—l+i<t,andhencé <t—d/2,k <t—i¢ I <t—4i.
This implies Corollary 1 taking account ¢f ) = 0if & < 0 or
b > a. |

In particular

-
|

and

Note that (10) and (12) are special cases of Corollaries 1 and
ford = 1.
It is worth pointing out that there exist distance-transitive
graphs that are not monotone on intersections. In particular, the
following example of such graph ([2, p. 363]) was communi-
cated to the author by A. Brouwer. Consider a grépivhose
setV of vertices is formed bg*® cosets of the punctured perfect
Golay (23, 12, 7)-code (see [17]). Two vertices are adjacent if
and only if the Hamming distance between the corresponding
sets is one. The sought graph is the bipartite double of.
The graphl” is distance-transitive and has diameteHow-
ever,I;(V'; 2) = 44 < I,(V’; 2) = 74 for its vertex set”.

As an example, note that@ C A7 is a code of minimum
distanced = 3, then the minimum numbel (C; ¢, 0) = IV. PROBABILISTIC CHANNELS
N(Ay; ¢, 3) + 1 of erroneous patterns over the combinatorial

h | admitti bstituti that al fice t The problem of efficient reconstruction of an unknown se-
channel admi m_g substitution errors that always sutlice to re'quence distorted by errors which occur with certain probabilities
construct an arbitrary point e C, fort =1, ¢t = 2, andt = 3,

) is reduced to an optimization problem of multiple transmission
is equal tal, 6(¢g—1)+1, and6(n — 3)(g—1)2+¢>+1, respec- P P P

tivelv. Note also that. f 96 C A™ of mini dist of an arbitrary sequence over a probabilistic channel (see Fig.
Ively. Note aiso that, Tor a code & A, ot minimum diSIance 4y 11 o419 pe taken into account that for discrete channels,
d = 2t — 1, the equality (49) means that the minimum numb

' N . general, the exact reconstruction of a sequence is possible
qf .sequenceM(O, t, 0) = N.(A2’ t, 26— 1) +1that are sgf— only within a certain probability. For channels with continuous
ficient to reconstruct an arbitrary € C for the combinatorial

. L + ) input and output, in general, the probability of the exact recon-
g??ennngilhw'th at mostsubstitutions equals’) + 1 independent struction of a multiply transmitted sequence equals zero and we
.

can only attempt to reconstruct this sequence with a certain ac-
Corollary 2: The Johnson graphy = I'(J2, E) whereH curacy. In this section, we consider the problem of finding the
consists of al( ;) transpositions of two symbols is monotonegninimum number of transmissions of a sequence over a dis-

on intersections and for any, w, ¢, andd crete memoryless channel sufficient to reconstruct the sequence
t J exactly (or within a given Hamming distance) with a permis-
NI t, d) = Z <” v ) sible error probability. We shall also consider a similar problem
i=0 for continuous channels with discrete time and additive noise:

X Z Z a given Euclidean distance. It should be noted that these prob-
a=0b=0 lems can be treated as those of mathematical statistics with a
Proof: We use Lemma 6 to prove the monotonicity orknown probability distribution. However, we shall see that some
intersections of'y. Since every transposition is an automormethods and results of the theory of information transmission
phism of I'y; and an involution, the properties i) and ii) arecan be successfully applied to solve these problems.

it d w—d the efficient reconstruction of an arbitrary real sequence within
() () (i3ia)
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A. Optimal N-Recontructors for Discrete Channels which determine its asymptotic behavior when— oo under

Consider the problem of reconstruction of an unknown s&9Me restrictions on the dependence ahdd on.

quencer = (zy, ..., ¥,) € Ay provided that the permissible
errors transforme to vectors ofA” (of the same length) with
some probabilities. The problem is to find the minimum number For a discrete memoryless changit is natural to consider
N such that an arbitrary € A7 can be reconstructed with a@ class ofV-reconstructor¢ N = 1, 2, ...) whose action re-
preset accuracy and error probability fravdistorted versions ducesN-tuple transmission of a message o¢eto its single
of z. transmission over another “improved” memoryless chathel
In order to give to this problem a precise formulation, we uddh /V-reconstructor for a memoryless chan6g{of sizeg x r)
the Shannon notion of a discrete memoryless channel with ingif@lledreducible if there exists a memoryless chanig (of
and output alphabets, and A,., respectively. Such a channefSizeéq x g) such thatforany. (n =1, 2, ...) andz, = € A7
is charactgrized py the property that each letter of the output Z Po(Y|z) = Po, (2|2).
sequence is statistically dependent only on the corresponding YeYa n, F(Y)=z
letter of the input sequence. The channel is specified &  \ye shall use reducible reconstructors to estimate (52).
sition matrixC = (p;, ;) of the sizeg x r, wherep; ; = P(j|:) It is worth pointing out that any partitio of A into ¢
is the p_robablllty_of receiving the lettere A,. when the letter subsetsD; (decoding regions of € A,) uniquely defines an
i € Aqistransmitted) ., P(jl¢) = 1foranyi € A;. We  n_reconstructo™® as follows: if Y = (), Y € Yo n,

B. ReducibleV-Recontructors for Discrete Channels

shall denotg this channel (as |ts transition matrix)}(hyThus, ,, _ 1,2, ...,and (i1, - yin) € Doio =1, ..., m,
the probability Pe(v|x) of receivingu = (_vl, ceey Un) € AT then
whenz = (21, ..., z,) € Ay is transmitted over a discrete
memoryless channél can be expressed as FP(Y)= (21, ..., 2n)-
Pe(vlz) = [ Poxler). Since

k=1 ’
Foranyr = (1, ..., x,) € A we can consider the sequence Z Pe(Yle) = HPC(DZf i) (53)
(y1, --., yn~) Of elements ofA” as a sequence of patterns of Yo n, FP(Y)=2 =1

« distorted by errors in the chann@l Contrary to the case of /' is a reducibleV-reconstructor for any channél and the
combinatorial channels, some elements of this sequence migbtresponding transition matriXy = Cy, p has entries

be identical. We again consider pQ;D = Po(D;l4), i,j € Ay

Ui = (W1,j> -1 Un,j) € A, Jj=1...,N On the other hand, any reducibié-reconstructort’ for a
as columns of a matriX” = (y;, ;) over A, of the sizen x N. channelC generates a partitio® = (Do, ..., D,_1) of AY
All elements of each row oY are images of the same letter(or of some subset thereof) where
Denote byY;, n the setofall™" matricest” overA, ofthe size R N -y
nx N.LetFy be the set of all mappings: Y,, y — AZ,n = Dj=t:ye 4, Fly) =)

In general I differs from £ for this partition. However, the

1, 2, ..., which are referred to a&-reconstructorsFor fixed .
. corresponding channelSy and C, p [and hence the error
r = (r1,...,7,) € A7 we can considel” = (y; ;) as an . :
. . T d robabilities (51)] must coincide for theséreconstructors, be-
Y,, n-valued random variable with the probability asmgnmen@ause
n N
o . . N, D
Pe(Y|z) = [ T[T Pus.slzn)- G0) PeyGly= Y Pe(Y]i) = Pe(Dsli) = p);".
k=1j=1 Yevy, n, F(Y)=j
For any0 < d < n, and anyF € Fx one can calculate the This allows us by bounding (52) to restrict our consideration of
error probability reducibleN -reconstructors t&V-reconstructorg'® whereD is
Pe(F, x, d, N) = 3 Pe(Y]e) (51) apartitionAY into g subsets.

VeV, dm(F(VY, 2)>d Denote byF7R, the set of all reducibléV-reconstructors. By
of reconstructing: € A™ within Hamming distance. Note that analogy with (52) we set

the casel = 0 corresponds to the exact reconstruction. We set Pg(n, d, N) = min max Fo(F, z,d, N)  (54)
; b e
Fe(n, d, N) = ;g__r}v al;rcl}af Fe(l, @, d, N) (52) and call a reducibléV-reconstructo#’ (in particular,/” = F'P)

and call anV-reconstructo¥ optimalif it gives the minimumin optimalif it gives the minimum in (54) (we shall see that there
(52). The functionP(n, d, N) is a nonincreasing function in exists a reducibléV-reconstructor which is optimal for alland

N becauseFy C Fu 1. For any discrete memoryless channel, 0 < d < n, whose definition does not depend @n
C,e(0<e< ), andintegers andd (0 < d < n), denoteby ~ Fora reducibleV-reconstructo#'?, the value

N¢(n, d, €) the minimum intege®V such thatP-(n, d, N) < 1 _pg’;D = 1— Po(D;|i)

e (we shall see that such integaf exists except in some de-.haracterizes the error probability of transmitting aletterA,

generate cases). ThuSc(n, d, ¢) is the minimum number of ¢ er this channet’y. p or of its recovery at the output of the
repeated transmissions which allow one to reconstruct any $€xeconstructod”. Let

quence of length with accuracy up t@ letters with error prob-

ability at moste. Our aim is to obtain bounds aN¢(n, d, €) Pe(N) = Hpt ﬁgif(l ~ Pe(Dil) (55)
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where the minimum is taken over all partitiohsof A% into ¢
Example 4.1: For the channel
p

decoding regions.
_(1-p
¢= < s 1- s)

N = 2, and a partitionD of A3 such thatD, = {00, 01, 10},
Dy = {11} we have
1-p? P’ )

C2p = <3(2—3) (1 s)2

(For p? s(2 — s) the channel’; p is a symmetric onel)
Let0 < s < p < 1/2 andp? < s(2 — s). Then, in the case
s(2 — s) < p, this partition and = 1 provide the extrema in
(55) and imply that’-(2) = s(2— s). In the case(2 — s) > p,
we haveP-(2) = p and this is attained on the partitidpy =
{00, 01}, D; = {10, 11} fori = 0.

(56)

Now we express (54) as a function la-(N). For any inte-
gersn andd, 0 < d < n, and any real vectar = (uq, ..., uy,)
where0 < u; < 1,14 1, ..., n, consider the function
g(n, d, w) = g(n, d, u1, ..., u,) defined by

gln,dyug, ... up,) = Z Z l_IuZ H (1—uy)

m=d+1ICI,,|I|l=mi€l  jel,\I
wherel,, = {1, ..., n}. One can check that far< d < n

Wt S [lw I -w
h ICI (R}, |I|=di€] eI, \{IU{R}}
Therefore,

g(nv d7 ULy -, U’n) < S <7’L, d7 1I£?§Xn U’Z) (57)

¢

We shall also use the fact th&n, d, p) growsinp, 0 < p < 1.

where

n

S(n, d,p) =Y

) pPa-pn
i=d+1

Lemma 7: For any integers., d, andN (0<d<n, N >1)

P2(n, d, N) = S(n, d, Po(N)). (58)

Proof: For any (reducible}V-reconstructo#” we have

Po(FP 2z, d, N)=g(n, d, ug, ..., u,)

whereu; = 1 — Po(Ds,|z;), i =1, ..., n. According to (55)
and (57) this implies that
PC(FD7 €, d7 N)SS(TL, d7 PC(N)) (59)

If one considers the partitio of AY and the letteiy € A,
for which the extrema in (55) are attained, thenfoe ¢ the
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the case. The matter is that for a fixedany (in particular, op-
timal) IV-reconstructoi#” is uniquely defined by the following
partition D) of the sety;, x of all "V matricesy” over A,. of

the sizen x N into ¢™ decoding regionsDi"), z € Ay

F(Y) =z ifand onlyif Y € D). (60)

Since Po(F, z, d, N) [see (51)] forz € A7 depends only
on the partitionD(), one can find an optimaV-reconstructor
F choosing for anyn, n = 1,2, ..., andd = d(n) a par-
tition D™ which minimizesmax,¢ 4~ Pc(F, «, d, N). Note
that for a reducibléV-reconstructo#~, the corresponding par-
tition D™ of ¥,, x (which we shall denote b™) is obtained
from the partitionD of AY as follows:Y” = (y; ;) € D7 where
z = (z1,..., 2y ifand only if (y; 1, ..., y;, n) € D, for
every: =1, ..., n.

Example 4.1 (Continued)The reducible2-reconstructor
FP considered in Example 4.1 for= 2 implies the following
partition D?:

p2 _ [00, 00, 00 01 01 01 10 10, 10

@~ 00 01 10 00 01 10 00 01 10
11

2 _ J00 01 10

DOl_{n 11 11

2 _ J11, 11, 11

Dlo_{oo 01 10"

For0 < s < p<1/2andp? < s(2—s) < p, FP is an optimal
reducible2-reconstructor and, in particular

P&(2,0,2) =1 — min Po(D3|z).
aceAg

Since
Pc(D3o|00) = (1 - p*)?
Pc(D;101) = Po(DFo[10) = (1 - p*)(1 - 5)*
Pe(D[11) = (1 —s5)*

we have

P2(2,0,2)=1—(1—s)*

On the other hand, carrying the last matrix frd?j, to D%, we
get another partitiod(? for which

min Pe(DP|z) > (1 —s)*
TEAZ
if, in addition,
(1-p** =p*(1—p)* > (1—s)"

All required inequalities hold, for example, when= p?, and
henceP(2, 0, 2) < PA(2, 0, 2) in this case.

Thus,Pc(n, d, N)is, in general, smaller thaRg(n, d, N).

equality in (59) holds. Using the fact that the minimum in (54%tjll, we shall obtain asymptotically tight bounds to

is attained at atV -reconstructo'”, we get (58). O

Atthe first sight it might seem that an optimal reduciblere-
constructor must be optimal in the class offgHreconstructors
since we consider memoryless chanr@ld$However, this is not

Pc(n, d, N) using reducible reconstructars” with partitions
D of AY into ¢ subsetsD;, (decoding regions of) satisfying
the maximume-likelihoodML) property

Pe(ylk) > Po(yli), forany: € A if y € Dy.  (61)



LEVENSHTEIN: EFFICIENT RECONSTRUCTION OF SEQUENCES 17

Note that such a partitioP is in general not uniquely defined,is attained for» = FP(Y). It suffices to check that it =

however, the value 21z £ FP(Y), ie,u; ¢ D, for some0 < i < n then,
B 1t replacingz; with a € A, determined by the conditiom; € D,,
Pc(N)=- Z(l — Pe(D;li)) (62) ~z will be changed tcz with f(z) < f(z). To simplify this no-
152 tation we assume that= n. For » = 2'z,, 2 = 2’a, where
does not depend af? and minimizes 2 = 2 - 2,1, We havex € Lq(2)\Lq4(%) if and only if
18 z = z'a for somez’ = x; - x,—1 Such thatdy (2/, ') =d,
- Z(l — Po(D;li)) andx € Ly(2)\La(2) if and only if z = ', for somez’ as
?i=0 above. By (50), it follows that
in the class of all partition® of A% into ¢ subsetsD;. There-
fore (see (55)) f(z) = f(2)
Pe(N) < Po(N) < PA(N) ©3) = >, Plp- > Pe(Y|r)
where @€ La(2)\La(Z) #€Lq(2)\La(2)
n—1
PE(N) = minmax(1 — Po(Dili)) (64) = > I Petwrler)(Po(unla) = Po(un|z.)).

zdg (o, 2 )=d k=1

and the minimum is taken over all partitionsof AY into de-  gjnce the condition,, € D, implies Pe(up|a) > Pe(tun|2n)
coding regions of, i € A,, satisfying the ML property. by the ML property, this completes the proof of the fact that (66)
Example 4.1 (Continued)For the channel (56) with < s < IS minimized by/” = FP. By (53), FP(Y) can be regarded as
p < 1/2the partitionD of A2 above is the unique one satisfyingthe output of a discrete channel, hedee( £, «, d, N) repre-
this property. Therefore, using the calculations above we getS€nts the probability that, transmitting= =, - - - z,, over this

_ P2+ 25 — 82 channel, the output differs from in more thand components.
Pc(2) = — < Po(2)=p< Pi(2) =2s—s> It follows that (65) fort” = F'” represents the probability that
if s(2—5) > p the input and output differ in more thahcomponents when a

random input, uniformly distributed oAy, is transmitted over
The following lemma establishes our basic bounds this channel. In this case, the input and output differ inithe
Pc(n, d, N). The key to its proof is to show that the averageomponent with probability (62), and these events are indepen-

overz € Ay of the probability of error of reconstructing dent fori = 1, ..., n. This proves that, fo#’ = F”, (65)
within distanced is minimized by the reducibléV-recon- equalsS(n, d, Pc(N)). O
structor /P with D satisfying the ML property (fod = 0, the
latter holds by the standard optimality of ML decoders). C. Bounds on the Minimum Number of Repeated Transmissions
Lemma 8: For any integers., d, andN (0<d<n, N>1) Now we are ready to obtain an asymptotically tight bound
_ on the minimum number of repeated transmissi¥pgn, d, =)
S(n, d, Pc(N)) < Pe(n, d, N) < S(n, d, P&(N)). that allow one to reconstruct any sequence of lemgi¥ith ac-

Proof: The upper bound follows from (58) and (63). TCuracy up tod letters with error probability of at mostfor a

obtain the lower bound we consider for Ahrreconstructod” d|chrete mg_mqrylgs]: chznr(él ider th
the partitionD( defined by (60) and note that orany distinct, & € A,, consider the set

. > . Ai 1 = {j € Az P(jli)P(j|k) > 0} (67)
TN Y eYn, v, dn(F(Y), 2)>d

> Ly ) Pe(Ylz). (65)

which may be empty. Foramny, 0 < s < 1, let

‘. ZCAT VEY, N, dn (F(Y),x)>d o, 1 (s) = Z (P(jl)) =2 (P(4]k))? (68)
With the notationLy(z) = {z € A}: du(z, ) > d}, we can and e
rewrite (65) as oC)= max  min o u(s). (69)
1 i, k€A, ik 0<s<1
q Z Z PeY). (66) It is clear thatd < «(C) < 1. Note thate(C) = 0 if and only

YE€Yn, N €L, . . .. g
v weLalFO)) if A;  is empty for all distinct, k£ € A,. This means that any

We shall prove that (66) attains a minimum value wieis the  column of transition matrixC' contains at most one nonzero
reducibleN-reconstructod=? (or, equivalently, wheD™ = probability and, hence, each letter of any input sequence is
D™), whereD is a partition ofAY into q regions satisfying the uniquely defined by the corresponding letter of the output
ML property. Then we shall find this minimum value. To thissequence. Note also thatC) = 1 if C contains two identical

end, for each fixed matri¥” € Y,, n, with rowsw,, ..., u», rows. The converse statement is true as well. Indeed, if for
say, we shall show that the minimum of some distinct, k € A,
_ : VNI =5 e —
f= > PoY|o) Jmin > (PGl T (PR =1

xCLa(z) JCA; &
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then = > (o)
. . keAg\{i}
> P(ly= > P(lk) =1
JEA; & JEA; & for any numbers;, 0 < s, <1, k € A,\{¢}. Choosings; so

o P ) as to minimizew;_ «(s), and using the definitions (64) and (69),
and, henceP(JL:)_: Pg‘]'k) :I'O fpr iacnj fé A”‘ Frolr_n thef IWe obtain the desirable upper bound.
necessary condition of equality in the Holder inequality it fol- /& i,k € Ay, k # i, such that

lows thatP(j]¢) = P(j|k) forall j € A; » and, hence(' con-

tains two identical rows. The existence of these identical rows in a(C)= min o i(s)

C implies that, for any € A}, Pc(y|é") = Fc(y|k™) where 0=s=1

@ = (i,...,49) € A, i € A,. This means that at least one2nd .
of the sequence®' andk™ cannot be reconstructed with error B(C) =v2 max |In r (J|'L) )
probabilitye < 3. In order to exclude these trivial cases we shalll FEAi & P(j|k)

considemondegeneratehannels” whose transition matrix’ L
does not have two identical rows and contains a column Withé\ﬁ
least two nonzero probabilities. The arguments above show tha

0< CY(C) < 1. ai7k(8*) = CY(C) (70)
if (and only if) the channel” is nondegenerate. ) o )
The following statement is derived from the celebrated resainc€L: and Dy are disjoint, (62) yields

on the probability of error for a code with two codewords due - .
to Shannon, Gallager, and Berlekamp [22, Theorem 5]. In fact, ¢Pe(N) 2 Z Pelyli) + Z Fe(ylk)

tthe minimum ofy; »(s)for0 < s < 1 be attained a = s*
9 hence

we apply their arguments to calculate the corresponding bounds yEAD; yEAT\Ds
for the “repetition” code{i™: i € A,}. This explains rather a > Z min(Pe(y|4), Pe(ylk)). (71)
simple formulation of the statement. yeAN

Lemma 9: For any nondegenerate discrete memoryless charking into account thak(C) = ming<s<; a; x(s) > 0 and
nel C hencex; 1(s) > 0for0 < s < 1, set
e_'ﬁ(c)\W N = N
T(a(C)) S Po(N) < PE(N) < (g—1)((C)) pu(s) = N In a; x(s) (72)
where and note that(s) is differentiable any number of times and

BA(C) = V2 min max |l LU wls)=Tn S° (Polylk)' " (Pelyli))’.  (73)
JEAL & P(j|k) year,

and the minimum is taken over allk € A,, ¢ # k, such that
a(C) = ming<,<1 o5 1(8).

Proof: Consider a partitionD of AY into ¢ subsetsD;,
i € A, satisfying the ML property (61). It follows from (67), Po(ylk)

The following remarkable fact was established in [22]. If, for
anys, 0 < s < 1, one considers the log-likelihood ratio

(68), and (50) that for each k € A,, i # k Aly)=In o) Y €AY} (74)
{y € AY: P(yli)P(y|k) > 0} = A, to be a random variable with probability assignment
and Oty — Pl (Petalh)) -
(i k()N = D (Pe(yli) —*(Po(ylk))”. ) > (Pe(zli)—*(Po(z|k))
yeAl, 2CAN,
Using that then the derivativeg’(s) andy/’(s) are the mean and variance

. of A(y), respectively! In particular, this implies that for the set
Pe(ylk) = Pe(ylt),  fory e Dy

_ N . /
by the ML property (61), we have for eack A, G, = {y € Ak |AQY) (o)l < v 2“//(3)}
1 — Po(D;lé) we have

= 2. 2 el S Q) >

kCA,\ (¢} uCDy (76)

yeG,
= E E Pe(yli) , ,
KEAN} yeDEnAN, by the Chebyshev inequality. Note also that
< D > (Polyli) =" (Po(ylk)™ a1 (s) RO N
< — 2 _ L2 < 32 )
RCAN ) yeAl, 0<us) NOéZ k(s) v <az k(3)> -2 Q). )
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From (73)—(75) it follows that Denote byx(n) = z(n, d, £) the unique solution of the equa-
Po(yli) = e6)=30)0) (1) tion S(n, d, x) = e whenz € [0, 1]. Sinces — 0 we have

Pe(ylk) = e HI=080 g, () o(n) < 2
n
and hence for any € G, and hencer(n) — 0 asn — oo. By the monotonicity of

Pe(yli) > =51 6)=s3/207G) () S(n, d, p)onp
Po(ylk) > etOFA=/ (6)=A=)y/20" () ) (). Po(N) < z(n) < PL(N —1).

According to (71) and (76), to complete the proof it is sufficient herefore, Lemma 9 implies thaf — oo and
to verify that this implies that for any € G, “1n 2(n) ~ —N ln a(C). 81)

min(Po(yli), Pe(ulk)) > (a(C)Ne P OVN Q. (y). (78) By Bonferroni's inequality

If 11/(s) changes sign fob < s < 1, theny/(s*) = 0 and (78) n
holds due to (70), (72), and (77).4f(s) > 0 or z/(s) < 0 for <d+ 1

)xd+l(1—x)"_d_l <S(n, d, z) < < " )xd'H.
0 < s <1, thens* = 0 ors* = 1, respectively, and (78) also

d+1

holds in both cases. o The use of Stirling’s inequalities shows that
Example 4.1 (Continued)For the channel (56) with < s < - In S(n, d, z) =In d+1 +O(1)
p < 1/2 d+1 nT
. if d/n — 0andz < d/n asn — oo. On account of (81), this
a(C) =p <1 - S) <1n w> /1n 1-p completes the proof. |
S S
P P By Theorem 4No(n, d, €) grows linearly with the length
where when the permissible error probabilityof reconstruction of a
(1—p)In L=z (1—p)(1—s) sequence with at mogtwrong letters decreases exponentially
T = <1 %) / 1 pi, with . Itis interesting to compare this with the following result
pln =7 ps which shows thatVe(n, d, €) is bounded when reconstruction

of a sequence is permissible witlixeed fractiond/n of wrong
letters ance = (n) is not smaller than an exponentsin We
use the Chernoff bound

Example 4.2: For the channel ) d+1
S(n, d,p) <2 TG 5= 2T

and 3(C) = v2In 2. In particular,a(C) = 2/p(1 — p)
whens = p.

>p (82)

R n
1 1
c=|3% 0 3 where 1
11z T(6, ) = —6 log, T (1—146) log, ey
6 1-46
3 2v241 2/2 +1 For afixeds, 0 < 6 < 1, T(6, =) decreases fromxw to 0 when
oC) =max | -, — =— « traverses the intervéd, &]. For anyc > 0, denote byy(é, c)

d the unique (if0, é]) root of the equatiod’(6, =) = c.
an
Theorem5:If d+1 > 6n,0 < 6§ < 1,ands > 27", ¢ > 0,

3(C)=+v21n 2. .

B(C)=V2Tn then for any nondegenerate discrete memoryless chahaetl
Note that in this cas€&-(1"|1") =0 for anyn sincep; 1 =0. anyn,n =1, 2, ...

However, one can recover any sequence, includingvith ar-

g—1
bitrary prescribed error probability, using a sufficient numiver Ne(n, d, €) < In 7, ) (83)
of its transmissions over the channel. T I gy
Theorem 4:Lete = e(n) > 0Oandd = d(n) > 0 be Proof: Denote byN the right-hand side of (83). Using

functions such that — 0 andd/n — 0 asn — co. Then Lemma 9, we get
for any nondegenerate discrete memoryless chafinel . N
FPe(N) < (g—=D(a(C)Y <79(6, ) <6

In-* + -1 In
Non, d, &) ~ T 253
(o)

o=

(79) and hence, by Lemma 8, for= P:(N), anyn andd+1 > én

Pe(n, d, N) < S(n, d, p) < 27 T@pn

Proof: From the definition of the numberV =
< 2—T(<5,'y(z5,c))n — g9—en <e. n

Ne¢(n, d, ) and Lemma 8 it follows that

S(n, d, Pc(N)) £ Pe(n, d, N) < e Note that the Chernoff bound (82) shows that the probability
< Pe(n,d, N—-1)< S(n,d, PA(N —1)). (80) of the event that at leagt: wrong letters will result when a
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sequence of length is transmitted over a symmetric binaryp(z) andw(z), there exists a unique vectdr* = ™ (Y") which
channel with parameterdecreases exponentially withwhen minimizes the integral

6 > p. If it is desirable to have a better constant in the expo- n N
nent or an exponent in the caée< p, one can use repeated / w(||F* = 9])) H Hp(yiyj — 6;)d6.
transmissions and estimate the minimum number of necessary " i=1j=1

transmissions with the help of Theorem 5. In particular, in thehis £+ is called the Pitman estimator and it is minimax in the
casep = 0.02, 6 = 0.01, andc = 0.1 we get that five repeti- class of estimators invariant with respect to shifts, i.e., such that
tions are sufficient independently of the length Flyi+z, ..., yn+2)=F(y, ..., yn)+ zforall z € R".
Under some additional restrictions, the Pitman estimator is min-
D. Reconstruction for Continuous Channels with Additive  imax in the class of all estimators, by the Hunt-Stein theorem.
Noise If p(x) is a normal density ane(>) is defined by (85) (or

— 2 i it
In this subsection we consider channélsvith discrete time @(2) = #°), then all required conditions hold and

and an additive noise for which the input and output alphabet 1 X

is the setR of all reals. We again assume that each letter of mY)= > v (86)
the output sequence is statistically dependent only on the corre- i=1

sponding letter of the input sequence and is the sum of that leff&us, in this case the estimator (86) is minimax forralk 1
and a noise which is a continuous random varigbléth mean andé > 0, although its definition does not depend &n(The
0. For simplicity, we assume that the distribution functior¢of author has a simple combinatorial proof of the fact.)

has a symmetric densip(z) =p(—z). For any input sequence From now on we consider the Gaussian chadhet G with

§=(61, ..., 6,) € R™, we can consider sequenggs ..., yy Variances? when¢ has the density
in R™ as patterns of distorted by errors in the chann@land 1 =
represent them as columns of a malrix=(y; ;) over R of the p(z) = Varo ¢ 2 (87)

sizen x . Now we denote by’,, v the set of all real matrices |, his case, for any ando the N-reconstructor (86) is optimal
Y of the sizen x N and byF the set of alllV-reconstructors forall § > 0 and

I which give a continuous functiof’ : Y;, y — R™ for any
n=1,2,....Forafixedd = (6, ..., 8,) € R™ we can con-
siderY = (y;, ;) € Yy, y as am.V-dimensional random variable where

Pa(n, 6, N) =1 - Pu([[¢]* < 6*)

with density] [I_, [[7, p(w:, ;—f;). For anyF' € Fy and§ >0 . X

we can calculate the probabiliBe (|| F(Y)—8]|| > 6) of the event $=% & and &= (&, b )

thaté is not reconstructed within Euclidean distarécéln the j=1

sequel||z|| stands for the Euclidean norm o€ R™.) The value Each component¢);, i = 1,...,n, of the vector¢ is

the arithmetical average oV independent and identically
FPo(n, 6, N)= inf sup Pr(J|F(Y)—0| >¢6) (84) distributed (i.i.d.) Gaussian random variables with méan
FCPn bern and variances? and, hence, is Gaussian with meanand
variances?/N. Thus, similar to reducibleV-reconstructors
M8 a discrete memoryless channel, the action of the optimal
N-reconstructor (86) is equivalent to a single transmission of a

characterizes the maximum error probability of reconstructi
6 within Euclidean distancé for the best (optimal}V-recon-
structor. For any: (n=1, 2, ...), §(§>0), ande (0<e < 1),

2, . messagé = (6, ..., 8,) € R" over the Gaussian channel
?Denoteé bXZNE(”’ 5, ¢) the minimum integerV such that with the decreased variance?/N. Moreover, since@)i,
c(n, 6, N) <e. i =1, ..., n, are independent random variabl®s;"_, |(£):|?

The problem of finding an optima/' -reconstructor coincides has thex?2 probability distribution
with the classical statistical problem to find the minimax esti-

mator £ of an unknown vectofé € R™ based onV indepen- o 1 5\? e
dent observationg, ..., yy of a random valugs € R™ with Pr Z ()il <6 Im/ " Ce” 2 dx
densityp(z — 8), provided that the loss functid( £'(Y), 6) = i=1 2/ 70
w(||[F(Y) — 0]]) with and hence
N
1 202 n
0, f0<z<$ Pg(n, 6, N) =1- — / A2l N (88)
?) = 85 n
w(z) {1’ if 2> 6 (85) F(Z) o

is used. The minimax estimator is defined as the minimizer of L€mma 10:For any evem, the numbetN' = Ne(n, &, €)
is uniquely defined from the inequalities
_ 1)

n
sup BoL(F(Y), 6) 0 (cN, 2 - 1) <e<Q (c(N — 1),

|3

_ _ _ ~ wherec = 2, and
whereE) is the symbol of mathematical expectation for a fixed

6. We mention known results in a general outline (see, for in- Q\, m)=¢? Z ﬁ
stance, [11], [24]). Under some restrictions on the functions Pt il
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Proof: For any nonnegative integes In particular, Ng(n, &, €) grows linearly with the sequence
m lengthn when the permissible error probabiliyof reconstruc-
Q(A, m) A A ) - . . .
o = ¢ tion within a given Euclidean distangedecreases not faster

o than exponentially im.
and, hence, (88) implies that for even

Po(n, 6, N)=Q (cN, g — 1) . V. CONCLUDING REMARKS AND OPEN PROBLEMS

Since Pg(n, 6, N — 1) > ¢, we get the statement of the i )
lemma. 0 The aim of this paper has been to develop the theory of

efficient reconstruction of sequences which deals with opti-

As a numerical example note that for= 10, anyé = 20 mization problems for repeated transmission of information
ande = 0, 002, Ng(n, 6, €) = 7 by Lemma 10. through combinatorial and probabilistic channels. There is

a significant difference between these problems and the tra-
ditional problems of the theory of information transmission.

We consider repeatedly transmitting an arbitrary message in

Theorem 6:If o and$ are fixed, ande = =(n) — 0 as
n — oo, then

5 g—i(l + n(y)n, if =22 — (v >0) noncoded form and minimize the number of retransmissions
Ne(n, & €) ~ o2 1 e _lne sufficient for reproducing the message with a preset accuracy
2% In 2, if —2& — o - . . . A
¢ n and/or probability. This theory includes combinatorial, infor-
wherern(v) is the unique nonnegative solution of the equatiomation-theoretical, and statistical problems.
n—In(l+n =1 For combinatorial channels with types of single errors of
Proof: Because considerable interest in coding theory, such as substitutions,

transpositions, asymmetric errors, deletions, and insertions,
these optimization problems were solved. Moreover, simple al-
gorithms for the efficient reconstruction of sequences based on
Ne(n+1,6,e) > Ng(n, 6, €) generalized threshold functions were found. However, there are
numerous open problems connected with other types of single

I SUH.'CGS to c_on3|der only even. Since Q(A, m) s a de ._errors including their combinations, for example, substitutions,
creasing function of\, by Lemma 10, the asymptotic behavior . . . ; ; )

o . : deletions, and insertions. Interesting combinatorial problems
of Ng(n, 6, £) coincides with that oi\(n)/c whereA(n) is the

: . : N - ; also arise to findVy(V, t) for some subsety” C A7, for
unique solution of the equatiaf}(A, 3 — 1) = e(n). Using example, for the set’ of words with a given composition (in
standard arguments we get for eaah

particular, for all permutations whem = ¢q) in the case of
2 < N smand ™A transpositions.

; o=l ; (X) Tl A—m The concept of the graphy with error metric develops the

= = general construction of metrics on a finite or countablelset

Fg(n, 6, N) < Pg(n+1, 6, N)
and hence

and . . o . ) . L
(in particular,V C A7) introduced in [12]. At first sight, it is

z"’: A AT W?fl <m — ﬁ)j surprising that any finite graph of degreer can be treated as

A a graphl'y with a setH of r single errors which are permu-
tations of vertices in the case of regularCoding theory, the
These inequalities and Stirling’s formula show that i 0 and  theory of sequences, and computational molecular biology (see
A =m+x/mwithm — oo, thenQ(A, m) is greater than a [1], [6], [8], [19]) give numerous examples of types of single er-
positive constant it is a constant, and rors (one-to-one partial mappings— V) for which the prop-

c 41 T m! 4
=0 7=0

—1 .
1 e — St (142 erty H(V) = H~'(V) or the weaker parallelogram property is
Q(A, m) ~ T <—x + 1) e o) satisfied. An important problem is to describe types of single er-

_ _ rors inherent to genes, genomes, and other objects of molecular
if z — oo. It follows thatz — oc if Q(A, m) — 0. Moreover  biology and determine the minimum number of erroneous pat-

22 = terns sufficient for exact reconstruction. It is worth mentioning
—In Q(A\, m) ~ e if v — oo andﬁ —0 (89) a natural generalization of graplg; when each single error
s h € H has a positive weight anl; is considered as a di-
—In Q(A, m) ~m(n—In(1+n)),  if T >0 (90) rected graph with weighted edges. In this case, each ordered
o pair (x, z) of vertices ofl'y is characterized by the “weighted
—In Q(\, m) ~av/m. if T (91) distance” which equals the minimum sum of edge weights in a

directed path joining: with ». To advance the graph-theoret-
Letz(n) be defined b\(n) = m~+xz(n) /mwherem = 5—1. jcal approach it is significant to calculaté(V'; ¢, d) for some
Thenz(n) — oosince@ = (A(n), m) = e(n) — 0.Equations other graphd™;; and, in particular, to strengthen Lemma 6 for
(89)—(91) allow us to find the asymptotic behaviorgh) and  Abelian graphs. An interesting problem is to find the minimum

A(n) = m + z(n)y/m depending on that of size M (A?; t, p) of a setY” in the Hamming metric balB; ()
1 1 centered at an arbitrary € A7 which allows one to approx-
— ol e(n) = —— In Q(A(n), m). U imate thisz within distancep and find the corresponding al-
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gorithm. In general, the majority algorithm is not suitable for

p > 0.

Combinatorial channels essentially differ from probabilistic

REFERENCES

[1] A. Apostolico and R. Giancarlo, “Sequence alignments and molecular

ones in that they admit exact reproduction of messages,2
whereas for probabilistic channels messages are reproduceg]
with a certain probability. However, one should pay a large

price for this possibility. A simple calculation for the combi-
natorial (n, t)-channel of Theorem 1 shows that if the number

t of errors increases linearly with the lengthof messages,

(4]

(5]

then exact reproduction requires an exponentially increasinqe]
number of different erroneous patterns. On the other hand, by

Theorem 4, for reconstructing any message of lemgitith a
fixed probabilitys > 0 (for instances = 10~?) at the output

(71

biology,” J. Comp. Biol.vol. 5, no. 2, pp. 173-196, 1998.

A. E. Brouwer, A. M. Cohen, and A. NeumaieDistance-Regular

Graphs Berlin, Germany: Springer Verlag, 1989.

L. Calabi, “On the computation of Levenshtein’s distances,” Parke Math.
Labs., Inc., Carlisle, MA, Tech. Note TN-9-0030, 1967.

L. Calabi and W. E. Hartnett, “Some general results of abstract coding
theory with applications to the study of codes for the correction of syn-
chronization errors,Inform. Contr, vol. 15, pp. 235-249, 1969.

P. Delsarte, “An algebraic approach to the association schemes of coding
theory,” Philips Res. Repts. Supp¥ol. 10, 1973.

D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano, “Efficient algo-
rithms for sequence analysis,” Methods in Communication, Security,
and Computer Science Berlin, Germany: Springer Verlag, 1991.

R. G. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1968.

of a discrete probabilistic channel, a number of repetitions(g] A. Guénoche, “Can we recover a sequence, just knowing all its subse-
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memoryless channel seems natural and fruitful. Although an
optimal NV -reconstructor is not in general reducible, bounds forj

reducible N-reconstructors were used for a proof of the main

Theorem 4, and the asymptotic expression (79) is also valid for
the class of reduciblév-reconstructors. Moreover, this notion (1

gives rise to the new problem of interest to fifid: (V) (see
(55)) for a channet” and the corresponding partition e’
into ¢ regions.

(13]

The results on the reproduction of a sequence with the help
of its repeated transmissions over Gaussian channel lie in the
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