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Abstract

Let Γ = (V,E) be a graph and a, b nonnegative integers. An (a, b)-regular set in
Γ is a nonempty proper subset D of V such that every vertex in D has exactly a

neighbours in D and every vertex in V \D has exactly b neighbours in D. A (0, 1)-
regular set is called a perfect code, an efficient dominating set, or an independent
perfect dominating set. A subset D of a group G is called an (a, b)-regular set of G
if it is an (a, b)-regular set in some Cayley graph of G, and an (a, b)-regular set in
a Cayley graph of G is called a subgroup (a, b)-regular set if it is also a subgroup
of G. In this paper we study (a, b)-regular sets in Cayley graphs with a focus on
(0, k)-regular sets, where k ≥ 1 is an integer. Among other things we determine
when a non-trivial proper normal subgroup of a group is a (0, k)-regular set of the
group. We also determine all subgroup (0, k)-regular sets of dihedral groups and
generalized quaternion groups. We obtain necessary and sufficient conditions for a
hypercube or the Cartesian product of n copies of the cycle of length p to admit
(0, k)-regular sets, where p is an odd prime and a hypercube is a Cayley graph of
an elementary abelian 2-group. Our results generalize several known results from
perfect codes to (0, k)-regular sets.

Key words: Cayley graph; perfect code; regular set; efficient dominating set;
equitable partition
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1 Introduction

All groups considered in this paper are finite, and all graphs considered are finite and

simple. As usual, we use V (Γ) and E(Γ) to denote the vertex set and edge set of a graph

Γ, respectively. For a vertex v ∈ V (Γ), the neighbourhood of v in Γ, denoted by NΓ(v) or
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1

http://arxiv.org/abs/2310.01793v2


simply N(v), is the set of vertices adjacent to v in Γ. The subgraph of Γ induced by a

subset S of V (Γ), denoted by Γ[S], is the graph with vertex set S in which two vertices

are adjacent if and only if they are adjacent in Γ.

Let a and b be nonnegative integers. An (a, b)-regular set [7] in a graph Γ is a nonempty

proper subset D of V (Γ) such that |N(v)∩D| = a for every v ∈ D and |N(v)∩D| = b for

every v ∈ V (Γ)\D. In particular, a (0, 1)-regular set in Γ is called a perfect code [22, 26, 35],

an independent perfect dominating set [19, 25], or an efficient dominating set [9, 19]. In

this paper, we study (a, b)-regular sets in Cayley graphs with a focus on the special case

when (a, b) = (0, k) for a positive integer k. Let G be a group with identity element e.

Set X−1 = {x−1 : x ∈ X} for any X ⊆ G. If X−1 = X , then X is said to be inverse-

closed. For any inverse-closed subset S of G \ {e}, the Cayley graph Cay(G, S) of G with

connection set S is the graph with vertex set G and edge set {{x, y} : x, y ∈ G, yx−1 ∈ S}

[6]. It is readily seen that Cay(G, S) is a regular graph with degree |S|, and Cay(G, S) is

connected if and only if S is a generating set of G.

In recent years, perfect codes in Cayley graphs have attracted considerable attention

due to their connections with perfect 1-error correcting codes in coding theory, tilings

of groups, and equitable partitions of graphs (see, for example, [8–12, 22, 24–27, 30–

32, 34]). The reader is referred to [22, Section 1] and [33, Section 1] for such background

information. In particular, the Hamming graph H(n, q) and the Cartesian product C�n
q of

n copies of the cycle Cq with length q are both Cayley graphs of Zn
q , and the Hamming and

Lee metrics over Zn
q are exactly the graph distances in these graphs, respectively. Thus,

perfect 1-codes [20] under these metrics are exactly perfect codes in H(n, q) and C�n
q ,

respectively. So perfect codes in Cayley graphs are an ample generalization of perfect

1-codes in classical coding theory.

Huang et al. [22] introduced the following concepts: A subset D of a group G is called

a perfect code of G if it is a perfect code in some Cayley graph of G, and a perfect code

in a Cayley graph Cay(G, S) is called a subgroup perfect code if it is also a subgroup of G.

In [33, 34], Wang, Xia and Zhou generalized these concepts to regular sets: A subset D

of a group G is called an (a, b)-regular set of G if it is an (a, b)-regular set in some Cayley

graph of G, and an (a, b)-regular set in a Cayley graph Cay(G, S) is called a subgroup

(a, b)-regular set if it is also a subgroup of G. In [32], Tamizh Chelvam and Mutharasu

obtained a necessary and sufficient condition for a subgroup of a cyclic group to be a

perfect code. In [22], Huang, Xia and Zhou gave a necessary and sufficient condition for

a normal subgroup of a group G to be a subgroup perfect code of G and determined all

subgroup perfect codes of dihedral groups and some abelian groups. Continuing this line

of research, Chen, Wang and Xia [8] obtained necessary and sufficient conditions for a

subgroup to be a subgroup perfect code of the group. In [26], Ma et al. proved that a group

G admits every subgroup as a perfect code if and only if G has no elements of order 4. In

[35, 36], Zhang and Zhou obtained multiple results on subgroup perfect codes, including

a few necessary and sufficient conditions for a subgroup to be a subgroup perfect code

and several results on subgroup perfect codes of metabelian groups, generalized dihedral
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groups, nilpotent groups and 2-groups.

In [3], Bailey, Cameron and Zhou studied regular sets in Cayley graphs with the help of

group representations in the general framework of equitable partitions. In [33], Wang, Xia

and Zhou proved that for any normal subgroup H of a group G, the following conditions

are equivalent: (a) for any g ∈ G with g2 ∈ H , there exists h ∈ H such that (gh)2 = e;

(b) H is a perfect code of G; (c) H is an (a, b)-regular set of G for every pair of integers

a, b with 0 ≤ a ≤ |H| − 1 and 0 ≤ b ≤ |H| such that gcd(2, |H| − 1) divides a. In the

same paper they asked whether (a) and (b) are equivalent, and whether (b) and (c) are

equivalent, if H is not a normal subgroup of G. In [34], they gave a positive answer

to the latter question in the case when G is a generalized dihedral group or a group of

order 4p or pq for some primes p and q. With regard to the former question, an infinite

family of counterexamples showing that (b) does not imply (a) when H is non-normal

was constructed by Behajaina, Maleki and Razafimahatratra in [4].

This paper is a study of regular sets in Cayley graphs with a focus on (0, k)-regular

sets. The significance of (0, k)-regular sets in the study of regular sets can be seen from

the following observations: Let H be a subgroup (0, k)-regular set of a group G. Then

there exists an inverse-closed subset S of G \ {e} such that H is a (0, k)-regular set in

Cay(G, S). If H contains no involutions, then for any even integer a between 1 and |H|,

we can take a subset S0 of H \ {e} with size a/2 such that H is an (a, k)-regular set

in Cay(G, S0 ∪ S−1
0 ∪ S). If H contains involutions, then for any integer a between 0

and |H|, we can take subsets S0, S1 of H \ {e} with 2|S0| + |S1| = a such that S0 has

no involutions, every element of S1 is an involution, and H is an (a, k)-regular set in

Cay(G, S0 ∪ S−1
0 ∪ S1 ∪ S). On the other hand, if H is a subgroup (a, b)-regular set of a

group G, then H is also a subgroup (0, b)-regular set of G (but H may not be a (0, 1)-

regular set of G as exemplified by {0, 2}, which is a subgroup (0, 2)-regular set of Z4 but

not a (0, 1)-regular set of Z4).

The main results in this paper are as follows. In the next section we present some

preliminary results that will be used in subsequent sections. Among other things we prove

(Theorem 2.6) in Section 2 that a Cayley graph of a group G admits a proper subgroup

H of G as a (0, k)-regular set if and only if it is a k-cover of Kn with H as a vertex-fiber,

where n = |G : H| is the index of H in G. In Section 3, we establish connections between

subgroup (0, k)-regular sets in a Cayley graph and (−k)-equitable partitions of the graph

(Theorem 3.3). In Section 4, we investigate when a non-trivial proper normal subgroup

H of a group G is a subgroup (0, k)-regular set of G. We prove that this is always the

case when k is even (Theorem 4.1), and we give a necessary and sufficient condition for

H to be a (0, k)-regular set of G when k is odd (Theorem 4.4). As a consequence, we

obtain that, for odd k, H is a (0, k)-regular set of G if and only if it is a (0, 1)-regular set

of G (Corollary 4.5). In the case when G is abelian and k is odd, we give a necessary and

sufficient condition for H to be a (0, k)-regular set of G in terms of the Sylow 2-subgroups

of G (Theorem 4.8). These results for odd k generalize corresponding results in [22, 33]

from (0, 1)-regular sets to (0, k)-regular sets. In Section 5, we determine all subgroup
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(0, k)-regular sets of dihedral groups and generalized quaternion groups for all positive

integers k (Theorems 5.1 and 5.2), generalizing [22, Theorem 2.11] and [26, Theorem 1.7],

respectively, from k = 1 to any k. In Section 6, we prove that a hypercube Qn admits a

(0, k)-regular set if and only if its degree is of the form (2t−1)k for some t (Theorem 6.2),

and under this condition we give a construction of linear (0, k)-regular sets in such a

hypercube, where as usual the word “linear” indicates that these sets are subspaces of

Fn
2 . This is a generalization of the known result that perfect 1-error correcting codes of

length n under the Hamming metric exist if and only if n = 2t − 1 for some t (see, for

example, [20]). In the last section, Section 7, we prove that for any odd prime p and

integers n, k ≥ 1, C�n
p admits a (0, k)-regular set if and only if its degree 2n is equal

to (pt − 1)k for some t (Theorem 7.1), and under this condition we give a construction

of linear (0, k)-regular sets in C�n
p . This generalizes the known result that for any odd

prime p, p-ary linear perfect 1-error correcting codes of length n under the Lee metric

exist if and only if 2n = pt − 1 for some t, which can be obtained from [1, Theorem 15]

by choosing q there to be an odd prime and 2n+ 1 to be a prime power.

2 Preliminaries

As usual, for a group G and a subgroup H of G, we use |G : H| to denote the index of

H in G and NG(H) to denote the normalizer of H in G. A left transversal (respectively,

right transversal) of H in G is a subset of G which contains exactly one element from

each left coset (respectively, right coset) of H in G. For any D ⊆ G and g ∈ G, set

gD = {gx : x ∈ D}, Dg = {xg : x ∈ D}.

The following lemma follows from the fact that the right regular representation of G is a

subgroup of the automorphism group of any Cayley graph of G.

Lemma 2.1. Let G be a group, D a proper subset of G, S an inverse-closed subset of

G \ {e}, and k a positive integer. Then D is a (0, k)-regular set in Cay(G, S) if and only

if Dg is a (0, k)-regular set in Cay(G, S) for every g ∈ G.

Let Γ be a d-regular graph and D an (a, b)-regular set in Γ. By double counting the

number of edges between D and V (Γ) \ D, we obtain |V (Γ)| = |D|
(
1 + d−a

b

)
(see, for

example, [33]). In particular, if Γ admits a (0, k)-regular set D, where k ≤ d, then

|V (Γ)| = |D|

(

1 +
d

k

)

(1)

and hence k + d divides k|V (Γ)|. Moreover, all (0, k)-regular sets in a regular graph

have the same size. In particular, by (1), if D is a (0, k)-regular set in a Cayley graph

Cay(G, S), then k divides |S||D|. Furthermore, in the case when D is a subgroup of G,

we have |G : D| = 1 + |S|
k

and hence k divides |S|. So we have the following lemma.
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Lemma 2.2. Let G be a group, S an inverse-closed subset of G \ {e}, and k a positive

integer. If Cay(G, S) admits a subgroup (0, k)-regular set, then k divides |S|.

Lemma 2.3. Let G be a group, H a proper subgroup of G, S an inverse-closed subset

of G \ {e}, and k a positive integer. If H is a (0, k)-regular set in Cay(G, S), then there

exists a subset L of S with |L| = |G : H| − 1 such that L ∪ {e} is a left transversal of H

in G.

Proof. Denote Γ = Cay(G, S) and m = |G : H| − 1. Since H is a subgroup (0, k)-regular

set in Γ, we have |S| = km by (1). Since k ≥ 1, we know that G is the union of sH , for

s ∈ S ∪ {e}. Of course, for any two distinct elements s, s′ of S, we have either sH = s′H

or sH ∩ s′H = ∅.

Claim 1. For any k + 1 distinct elements s1, s2, . . . , sk+1 of S, we have s1H ∩ s2H ∩

· · · ∩ sk+1H = ∅.

Suppose otherwise. Then there exists a vertex u ∈ G such that u = s1h1 = s2h2 =

· · · = sk+1hk+1 for k+1 distinct elements h1, h2, . . . , hk+1 of H . That is, u is adjacent in Γ

to k+1 distinct vertices in H , which contradicts the assumption that H is a (0, k)-regular

set in Γ.

Claim 2. For any s ∈ S, there exist exactly k − 1 distinct elements s1, . . . , sk−1 of S

other than s such that s1H = · · · = sk−1H = sH .

In fact, let {s1, . . . , sl} be a subset of S with maximum size l such that s1H = · · · =

slH = sH . Then there exist distinct elements h1, . . . , hl, h of H such that s1h1 = · · · =

slhl = sh. By Claim 1, we have 0 ≤ l < k. If l < k − 1, then sh is adjacent to at most

l + 1 < k vertices in H , which contradicts the assumption that H is a (0, k)-regular set

in Cay(G, S). Hence l = k − 1 and Claim 2 follows.

Recall that G is the union of sH , for s ∈ S ∪ {e}. This together with Claim 2 implies

the existence of a subset L of S with |L| = |G : H|−1 such that L∪{e} is a left transversal

of H in G.

A graph Γ is called a k-cover of a graph Σ (see, for example, [37]) if there exists a

surjective homomorphism f from Γ to Σ such that |NΓ(u)∩ f−1(y)| = k for any {x, y} ∈

E(Σ) and u ∈ f−1(x). The homomorphism f is called a k-covering from Γ to Σ, and if in

addition f is m-to-1 for some m ≥ k then f is called an m-fold k-covering. Call f−1(x)

the fiber of x ∈ V (Σ) and f−1({x, y}) = {{u, v} ∈ E(Γ) : {f(u), f(v)} = {x, y}} the fiber

of {x, y} ∈ E(Σ) under f . Of course, a 1-cover is a cover and a 1-covering is a covering

in the usual sense (see [6, 16, 23]). It is readily seen that for any k-covering f : Γ → Σ,

every vertex-fiber of f is an independent set of Γ and the subgraph of Γ induced by any

two distinct vertex-fibers is either an empty graph or a k-regular bipartite graph. (Here

we use the assumption that Γ and Σ are simple graphs.) In particular, if Σ is connected,

then all vertex-fibers have the same size, say, m, and hence f is an m-fold k-covering.

The following lemma follows directly from the definitions of (0, k)-regular sets and

k-coverings. Denote by Kn the complete graph with n vertices.
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Lemma 2.4. Let Γ and Σ be graphs and k a positive integer. Then the following hold:

(a) if f : Γ → Σ is a k-covering and D is a (0, 1)-regular set in Σ, then f−1(D) is a

(0, k)-regular set in Γ;

(b) if Γ is d-regular, where d ≥ 1, and D1, D2, . . . , Dn are pairwise disjoint (0, k)-regular

sets in Γ, then Γ[D1 ∪D2 ∪ · · · ∪Dn] is an m-fold k-cover of Kn, where m = k|V (Γ)|
k+d

is the common size of Di, for 1 ≤ i ≤ n.

The following result generalizes [25, Theorem 1] from (0, 1)-regular sets to (0, k)-

regular sets.

Theorem 2.5. A regular graph Γ is a k-cover of Kn if and only if V (Γ) can be partitioned

into n blocks each of which is a (0, k)-regular set in Γ, where n and k are positive integers.

Proof. The sufficiency follows from part (b) of Lemma 2.4. For the necessity, suppose

that Γ is a k-cover of Kn, with f : Γ → Kn a k-covering. Then by part (a) of Lemma 2.4,

the fiber f−1(u) of any u ∈ V (Kn) is a (0, k)-regular set in Γ. Since f is surjective,

{f−1(u) : u ∈ V (Kn)} is a partition of V (Γ) into n blocks each of which is a (0, k)-regular

set in Γ.

In [25, Theorem 2], Lee gave a necessary and sufficient condition for the existence of

a (0, 1)-regular set in Cayley graphs of abelian groups. This result can be generalized as

follows.

Theorem 2.6. Let G be a group, H a proper subgroup of G, S an inverse-closed subset

of G \ {e} such that S ⊂ NG(H), and k a positive integer. Then H is a (0, k)-regular set

in Cay(G, S) if and only if there exists a k-covering f : Cay(G, S) → Kn such that H is

a vertex-fiber of f , where n = |G : H|.

Proof. Denote n = |G : H|. If H is a (0, k)-regular set of Cay(G, S), then by Lemma

2.1 and our assumption S ⊂ NG(H), sH = Hs is also a (0, k)-regular set of Cay(G, S)

for any s ∈ S. Moreover, by Lemmas 2.3 and 2.4, there exists an |H|-fold k-covering

f : Cay(G, S) → Kn with vertex-fibers gH , g ∈ L ∪ {e}, where L is as in Lemma 2.3. In

particular, H is a vertex-fiber of f .

Conversely, suppose that there exists a k-covering f : Cay(G, S) → Kn such that H

is a vertex-fiber of f . Then all elements of H are mapped by f to the same vertex of Kn,

say, x, and moreover H = f−1(x). Since {x} is a (0, 1)-regular set in Kn, by part (a) of

Lemma 2.4, H is a (0, k)-regular set in Cay(G, S).

The next lemma will play an important role in our subsequent discussions. In the

special case when k = 1, the equivalence of (a), (d) and (e) in this lemma gives rise to

[26, Lemma 2.2] which in turn is an extension of [22, Lemma 2.1(a)].

Lemma 2.7. Let G be a group, H a proper subgroup of G, S an inverse-closed subset of

G \ {e}, and k a positive integer. Then the following conditions are equivalent:
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(a) H is a (0, k)-regular set of Cay(G, S);

(b) there exists a subset L of S such that L ∪ {e} is a left transversal of H in G and

|{g ∈ S \ L : gH = sH}| = k − 1 for each s ∈ L;

(c) H ∩ S = ∅ and S can be partitioned into n − 1 parts each with size k such that

sH = s′H for s, s′ ∈ S in the same part and sH 6= s′H for s, s′ ∈ S in different parts;

(d) S can be partitioned as {L1, L2, . . . , Lk} such that Li ∪ {e} is a left transversal of H

in G for each 1 ≤ i ≤ k;

(e) S can be partitioned as {R1, R2, . . . , Rk} such that Ri ∪ {e} is a right transversal of

H in G for each 1 ≤ i ≤ k.

Proof. Denote Γ = Cay(G, S) and n = |G : H|.

(a) ⇒ (b) Suppose that H is a (0, k)-regular set in Γ. By Lemma 2.3, there exists a

subset L of S such that L ∪ {e} is a left transversal of H in G. Note that L ⊆ G \ H

and each s ∈ L is adjacent to e ∈ H in Γ. Since H is a (0, k)-regular set in Γ, there

exist exactly k − 1 distinct elements h1, h2, . . . , hk−1 ∈ H \ {e} which are adjacent to s

in Γ. That is, there exist exactly k − 1 distinct elements s1, s2, . . . , sk−1 ∈ S such that

s = s1h1 = s2h2 = · · · = sk−1hk−1. Note that s 6= si for each i as hi 6= e. If si ∈ L for

some i, then sH = (sihi)H = siH . Since both s and si are in the left transversal L∪ {e}

of H in G, it follows that s = si and hence hi = e, which is a contradiction. Hence si /∈ L

for each 1 ≤ i ≤ k − 1. Thus, we have proved that for each s ∈ L there are exactly k − 1

distinct elements s1, s2, . . . , sk−1 ∈ S \ L such that s1H = s2H = · · · = sk−1H = sH .

(b) ⇒ (c) Suppose that L is a subset of S which satisfies condition (b). Since L∪{e} is

a left transversal of H in G, we have |L| = n−1, H∩S = ∅, and sH 6= s′H for any distinct

elements s, s′ of L. By our assumption, for each s ∈ L, the subset Ts = {g ∈ S : gH = sH}

of S has size k. Moreover, we have Ts ∩ Ts′ = ∅ for distinct s, s′ ∈ L and ∪s∈LTs = S.

Thus, {Ts : s ∈ L} is a partition of S into n− 1 parts such that sH = s′H for s, s′ in the

same part and sH 6= s′H for s, s′ in different parts.

(c) ⇒ (d) Suppose that {T1, T2, . . . , Tn−1} is a partition of S satisfying condition (c).

Then |Tj | = k for 1 ≤ j ≤ n − 1. Write Tj = {s1,j , s2,j, . . . , sk,j} for 1 ≤ j ≤ n − 1.

By our assumption, we have s1,jH = s2,jH = · · · = sk,jH for 1 ≤ j ≤ n − 1. Set

Li = {si,1, si,2, . . . , si,n−1} for 1 ≤ i ≤ k. Then L1, L2, . . . , Lk form a partition of S.

Moreover, by (1) and our assumption, Li ∪ {e} is a left transversal of H in G for each

1 ≤ i ≤ k.

(d) ⇒ (a) Suppose that condition (d) holds. Since each Li ∪ {e} is a left transversal

of H in G, we have |Li| = n − 1, |S| = k(n − 1), and for any u ∈ G \ H there exists

exactly one element si(u) ∈ Li such that u ∈ si(u)H , say, u = si(u)hi(u) for some hi(u) ∈ H .

Since {L1, L2, . . . , Lk} is a partition of S, we have si(u) 6= sj(u) whenever i 6= j and hence

h1(u), h2(u), . . . , hk(u) are distinct neighbours of u inH . Since {L1, L2, . . . , Lk} is a partition

of S and each Li ∪ {e} is a left transversal of H in G, these are all neighbours of u in H
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and moreover H ∩ S = ∅. Hence H is an independent set of Γ. Thus, any u ∈ G \H is

adjacent to exactly k distinct vertices in H and therefore H is a (0, k)-regular set in Γ.

(d) ⇒ (e) Suppose that condition (d) holds. Since {L1, L2, . . . , Lk} is a partition of

S and Li ∪ {e}, 1 ≤ i ≤ k, are left transversals of H in G, the elements of S can be listed

as S = {si,j : 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1} such that Li = {si,1, si,2, . . . , si,n−1} for 1 ≤ i ≤ k

and s1,jH = s2,jH = · · · = sk,jH for 1 ≤ j ≤ n − 1. Thus Hs−1
1,j = Hs−1

2,j = · · · = Hs−1
k,j.

Since S is inverse-closed, we have {s−1
1,j , s

−1
2,j , . . . , s

−1
k,j} ⊆ S for 1 ≤ j ≤ n − 1. Set

Ri = {s−1
i,1 , s

−1
i,2 , . . . , s

−1
i,n−1} for 1 ≤ i ≤ k. Then {R1, R2, . . . , Rk} is a partition of S.

Since each Li∪{e} is a left transversal of H in G, we see that H,Hs−1
i,1 , Hs−1

i,2 , . . . , Hs−1
i,n−1

are pairwise distinct. This together with n = |G : H| implies that Ri ∪ {e} is a right

transversal of H in G for 1 ≤ i ≤ k.

(e) ⇒ (d) This is similar to the proof that (d) implies (e).

3 (0, k)-regular sets and equitable partitions

Denote by A(Γ) the adjacency matrix of a graph Γ. A partition π = {V1, V2, . . . , Vr}

of V (Γ) is called an equitable partition of Γ (see, for example, [16]) if there is an r × r

matrix M = (mij), called the quotient matrix of π, such that for any 1 ≤ i, j ≤ r

every vertex in Vi has exactly mij neighbours in Vj. It is known that, for an equitable

partition π with quotient matrix M , the characteristic polynomial of M divides that of

A(Γ) (see, for example, [16]), or, equivalently, the spectrum of M is contained in the

spectrum of A(Γ) (see, for example, [2]). In the case when Γ is a connected d-regular

graph, the equitable partition π is said to be µ-equitable if all eigenvalues of M other than

its principal eigenvalue d are equal to µ, and a non-empty proper set D of V (Γ) is called

a µ-perfect set of Γ if {D, V (Γ) \D} is an µ-equitable partition of Γ .

Lemma 3.1. [2, Proposition 2.1] Let Γ be a connected regular graph, and let π =

{V1, V2, . . . , Vr} be a partition of V (Γ). If π is µ-equitable, then each Vi is a µ-perfect

set of Γ. Conversely, if V1, V2, . . . , Vr are all µ-perfect sets of Γ, then π is µ-equitable.

Lemma 3.2. Let Γ be a connected regular graph, and let π = {V1, V2, . . . , Vr} be a (−k)-

equitable partition of V (Γ). If for some i, Vi is an independent set of Γ, then k is a

positive integer and Vi is a (0, k)-regular set in Γ.

Proof. Denote by d the degree of Γ. We may assume without loss of generality that V1 is

an independent set of Γ. Since π is (−k)-equitable, by Lemma 3.1, π′ = {V1, V (Γ) \ V1}

is a (−k)-equitable partition of V (Γ). Since V1 is an independent set of Γ, the quotient

matrix of π′ is of the form

M ′ =

(
0 a12
d d− a12

)

for some integer a12. Note that M ′ has eigenvalues d and −a12. On the other hand, by

the definition of a (−k)-equitable partition, both d and −k must be eigenvalues of M ′.
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Hence a12 = k. In other words, any vertex in V (Γ) \ V1 has exactly k neighbours in V1

and therefore V1 is a (0, k)-regular set in Γ.

The main result in this section is as follows.

Theorem 3.3. Let G be a group, H a proper subgroup of G, S an inverse-closed subset

of G \ {e} such that S ⊂ NG(H), and k a positive integer. Then the following conditions

are equivalent:

(a) H is a (0, k)-regular set in Cay(G, S);

(b) H ∩ S = ∅ and Cay(G, S) has a (−k)-equitable partition with exactly |G : H| blocks

and with H as one of the blocks;

(c) for every integer a with 0 ≤ a ≤ |S|
k
− 1, Cay(G, S) admits an (ak, (a + 1)k)-regular

set which contains H as a subset.

Proof. Denote Γ = Cay(G, S) and n = |G : H|.

(b) ⇒ (a) Suppose that condition (b) holds. Since H is a subgroup of G, the assump-

tion H ∩ S = ∅ implies that H is an independent set of Γ. So, by Lemma 3.2, H is a

(0, k)-regular set in Γ.

(a) ⇒ (b) Suppose that H is a (0, k)-regular set in Γ. Then H is an independent

set of Γ and hence H ∩ S = ∅. By Lemma 2.3, there exists a subset L of S with size

|L| = |G : H|−1 such that L∪{e} is a left transversal ofH inG. Let L = {s1, s2, . . . , sn−1}.

Since S ⊂ NG(H), by Lemma 2.1, siH = Hsi is a (0, k)-regular set in Γ for 1 ≤ i ≤ n−1.

Using this and a straightforward computation, we obtain that for 1 ≤ i ≤ n − 1, the

quotient matrix of the partition {siH,G \ siH} has exactly two eigenvalues, namely −k

and |S|. Thus, {siH,G \ siH} is a (−k)-equitable partition of Γ for 1 ≤ i ≤ n − 1, and

therefore H, s1H, s2H, . . . , sn−1H are all (−k)-perfect sets of Γ. It follows from Lemma

3.1 that {H, s1H, s2H, . . . , sn−1H} is a (−k)-equitable partition of Γ with exactly |G : H|

blocks and with H as one of the blocks.

(c) ⇒ (a) Setting a = 0 in (c), we obtain (a).

(a) ⇒ (c) Suppose that H is a (0, k)-regular set in Cay(G, S). Then by what we

have proved above, condition (b) is satisfied. By Lemma 2.3, there exists a subset L

of S with |L| = |G : H| − 1 such that L ∪ {e} is a left transversal of H in G. Let

L = {s1, s2, . . . , sn−1}. By the statement in (b), π = {H, s1H, s2H, . . . , sn−1H} is a

(−k)-equitable partition of Cay(G, S) containing H as a block. For any integer a with

0 ≤ a ≤ |S|
k
− 1, let Ha = H ∪ s1H ∪ · · · ∪ saH and πa = {Ha, sa+1H, . . . , sn−1H}. Set

s0 = e. Since H is a (0, k)-regular set in Cay(G, S) and S ⊂ NG(H), by Lemma 2.1,

siH = Hsi is a (0, k)-regular set in Cay(G, S) for 0 ≤ i ≤ n − 1. Thus, for 0 ≤ i, j ≤ a

with i 6= j, each u ∈ siH has exactly k neighbours in sjH . Hence each u ∈ Ha has exactly

ak neighbours in Ha. On the other hand, each u ∈ G \Ha has exactly k neighbours in

siH , for 0 ≤ i ≤ a. So each u ∈ G \Ha has exactly (a+1)k neighbours in Ha. Therefore,

Ha is an (ak, a(k+1))-regular set in Cay(G, S). Obviously, it contains H as a subset.
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In general, the three conditions in Theorem 3.3 may not be equivalent if H is a subset

of G satisfying sH = Hs for any s ∈ S but not a subgroup of G. However, we have the

following proposition which shows that (a) and (c) in Theorem 3.3 are equivalent when

H is such a subset and k = 1.

Proposition 3.4. Let G be a group, D a proper subset of G, and S an inverse-closed

subset of G \ {e} such that sD = Ds for any s ∈ S. Then Cay(G, S) admits D as a

(0, 1)-regular set if and only if, for every integer a with 0 ≤ a ≤ |S|−1, Cay(G, S) admits

an (a, a + 1)-regular set which contains D as a subset.

Proof. The sufficiency is trivially true. To prove the necessity, suppose that D is a (0, 1)-

regular set in Cay(G, S). Assume that S = {s1, s2, . . . , sn}. For any integer a with

0 ≤ a ≤ |S| − 1, let Da = s0D ∪ s1D ∪ · · · ∪ saD, where s0 = e. Since D is a (0, 1)-

regular set in Cay(G, S) and siD = Dsi, by [25, Lemma 3], siD is a (0, 1)-regular set in

Cay(G, S) for 0 ≤ i ≤ n and {s0D, s1D, s2D, . . . , snD} forms a partition of G. Thus, for

0 ≤ i, j ≤ a with i 6= j, each u ∈ siD has exactly one neighbour in sjD. Hence each

u ∈ Da has exactly a neighbours in Da. On the other hand, each u ∈ G \Da has exactly

one neighbour in siD, for 0 ≤ i ≤ a. So each u ∈ G \Da has exactly a+ 1 neighbours in

Da. Therefore, Da is an (a, a + 1)-regular set in Cay(G, S). Obviously, it contains D as

a subset.

A key ingredient in the proof above is the fact that {s0D, s1D, s2D, . . . , snD} forms a

partition of G. The counterpart of this statement may not be true when k ≥ 2, and this

explains why we require k = 1 in Proposition 3.4.

4 Normal subgroups as (0, k)-regular sets

In this section we study when a proper normal subgroup of a group is a (0, k)-regular set

of the group. The first main result in this section is as follows.

Theorem 4.1. Let G be a group and H a non-trivial proper normal subgroup of G. Then

for any even integer k between 2 and |H|, H is a (0, k)-regular set of G.

Proof. Set n = |G : H|. We first prove the result in the case when k = 2. Take a subset

R = {r1, . . . , rn−1} of G \ {e} such that R∪ {e} is a right transversal of H in G. Since H

is normal in G, R−1 ∪ {e} is also a right transversal of H in G. If R ∩ R−1 = ∅, then by

Lemma 2.7, H is a (0, 2)-regular set in Cay(G,R ∪ R−1) and hence is a (0, 2)-regular set

of G.

Assume |R ∩ R−1| ≥ 1 from now on. Without loss of generality we may assume that

R ∩R−1 = {r1, r2, . . . , rm}, where 1 ≤ m ≤ n− 1. By Lemma 2.7, it suffices to construct

two disjoint subsets R1, R2 of G such that R1∪R2 = (R1∪R2)
−1 and each of R1∪{e} and

R2∪{e} is a right transversal of H in G. We deal with the following two cases separately.

Case 1. |H| = 2 and H = {e, h}.
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Define Q to be the subset of G obtained from R−1 by replacing each involution ri ∈ R∩

R−1 by hri and retaining all other elements of R−1. Since Hri = Hhri for each involution

ri ∈ R∩R−1, Q∪{e} is a right transversal of H in G. Since both ri and h are involutions

and H is normal in G, we have r−1
i h−1 = rih = hri and hence (R ∪Q)−1 = R ∪Q.

If R∩Q = ∅, then by Lemma 2.7, H is a (0, 2)-regular set in Cay(G,R∪Q) and hence

H is a (0, 2)-regular set of G.

Assume R ∩ Q 6= ∅ in the sequel. Without loss of generality we may assume that

R ∩ Q = {r1, r2, . . . , rt, r
−1
1 , . . . , r−1

t } ⊆ R ∩ R−1, where 1 ≤ t ≤ m
2
. Since both R ∪ {e}

and R−1 ∪ {e} are right transversals of H in G, we have Hr−1
i 6= Hri for each ri ∈ R∩Q.

Let R1 be obtained from Q by replacing ri, r
−1
i by hri, hr

−1
i , respectively, for 1 ≤ i ≤ t,

but retaining all other elements. Since Hri = Hhri and Hr−1
i = Hhr−1

i , R1 ∪ {e} is a

right transversal of H in G. Set R2 = R. Since h2 = e, we have (R1 ∪ R2)
−1 = R1 ∪ R2.

Moreover, R1 ∩ R2 = ∅ and each of R1 ∪ {e} and R2 ∪ {e} is a right transversal of H

in G. Thus, by Lemma 2.7, H is a (0, 2)-regular set in Cay(G,R1 ∪ R2) and hence a

(0, 2)-regular set of G.

Case 2. |H| ≥ 3.

For all involutions ri ∈ R∩R−1 such that Hri contains an involution, say, hri, replace

ri in R−1 by hri and retain all other elements of R−1. Denote by Q the subset of G

obtained this way. If ri ∈ R∩R−1 is an involution such that Hri has no involutions, then

there exist distinct elements hri, h
′ri of Hri such that (hri)

−1 = h′ri as H is normal in

G. For all such involutions ri, replace ri in R by hri to obtain Q0 and replace r−1
i in Q

by h′ri to obtain Q1. Since H(hri) = Hri = H(h′ri), both Q0 ∪ {e} and Q1 ∪ {e} are

transversals of H in G. Moreover, (Q0 ∪Q1)
−1 = Q0 ∪Q1.

If Q0 ∩Q1 = ∅, then by Lemma 2.7, H is a (0, 2)-regular set in Cay(G,Q0 ∪Q1) and

hence a (0, 2)-regular set of G.

Assume Q0 ∩ Q1 6= ∅ in the sequel. Without loss of generality we may assume that

Q0 ∩ Q1 = {r1, r2, . . . , rt, r
−1
1 , r−1

2 , . . . , r−1
t } ⊆ R ∩ R−1, where 1 ≤ t ≤ m

2
. Since both

R ∪ {e} and R−1 ∪ {e} are right transversals of H in G, we have Hr−1
i 6= Hri for each

ri ∈ Q0 ∩ Q1. Since H is normal in G and ri 6= r−1
i , there exist elements h, h′ of H such

that hri 6= (hri)
−1 = h′r−1

i . Define R1 to be the subset of G obtained from Q1 by replacing

ri, r
−1
i by hri, h

′r−1
i , respectively, for 1 ≤ i ≤ t. Since Hri = Hhri and Hr−1

i = Hhr−1
i ,

R1 ∪ {e} is a right transversal of H in G. Moreover, (Q0 ∪ R1)
−1 = Q0 ∪ R1. Set

R2 = Q0. Then R1 ∩ R2 = ∅, (R1 ∪ R2)
−1 = R1 ∪ R2, and both R1 ∪ {e} and R2 ∪ {e}

are right transversals of H in G. Therefore, by Lemma 2.7, H is a (0, 2)-regular set in

Cay(G,R1 ∪R2) and hence a (0, 2)-regular set of G.

Up to now we have proved the result in the case when k = 2. With this as the base

case the rest of the proof proceeds by induction on k. Suppose inductively that for some

l with 1 ≤ l ≤ ⌊|H|/2⌋ − 1 we have obtained 2l pairwise disjoint subsets R1, R2, . . . , R2l

of G such that Ri ∪ {e} is a right transversal of H in G for 1 ≤ i ≤ 2l and ∪2l
j=1Rj is

inverse-closed. Write R1 = {r1,1, r1,2, . . . , r1,n−1}. Since 2l < |H|, for each 1 ≤ i ≤ n− 1,
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there exists hi ∈ H such that hir1,i /∈ ∪2l
j=1Rj. Set T = {h1r1,1, h2r1,2, . . . hn−1r1,n−1}.

Since R1 ∪ {e} is a right transversal of H in G and Hhir1,i = Hr1,i for each hir1,i ∈ T ,

T ∪{e} is a right transversal of H in G. Since H is normal in G, T−1 ∪{e} is also a right

transversal of H in G. Note that (∪2l
i=1Ri)

−1 = ∪2l
i=1Ri and T ∩ Ri = ∅ for 1 ≤ i ≤ 2l.

Hence T−1 ∩ Ri = ∅ for 1 ≤ i ≤ 2l.

If T ∩T−1 = ∅, then by Lemma 2.7, H is a (0, 2l+2)-regular set of Cay(G, (∪2l
i=1Ri)∪

T ∪ T−1) and hence a (0, 2l + 2)-regular set of G.

In what follows we assume T ∩ T−1 6= ∅, say, T ∩ T−1 = {t1, t2, . . . , tm}, where

1 ≤ m ≤ n− 1. If |H| = 2, then H is a (0, 2)-regular set of G as shown in the case when

k = 2. Henceforth we assume further that |H| ≥ 3. For all involutions ti ∈ T ∩ T−1 such

that Hti \ (∪
2l
j=1Rj) contains an involution, say, hti, replace ti by hti in T−1 to obtain a

new subset T1 of G. Since H is normal in G with |H| ≥ 3, if ti ∈ T ∩T−1 is an involution

such that Hti \ (∪
2l
j=1Rj) has no involutions, then there exist distinct elements hti, h

′ti of

Hti \ (∪
2l
j=1Rj) such that (hti)

−1 = h′ti. For all such involutions ti, replace ti by hti in T

to obtain a new subset T0 and replace t−1
i by h′ti in T1 to obtain a new subset T ′

1. Since

H(hti) = Hti = H(h′ti), both T0∪{e} and T ′
1∪{e} are transversals of H in G. Moreover,

(T0 ∪ T ′
1)

−1 = T0 ∪ T ′
1.

If T0 ∩ T ′
1 = ∅, then by Lemma 2.7, H is a (0, 2l+ 2)-regular set in Cay(G, (∪2l

i=1Ri) ∪

T0 ∪ T ′
1) and hence a (0, 2l + 2)-regular set of G.

Assume T0 ∩ T ′
1 6= ∅ in the sequel. Without loss of generality we may assume that

T0∩T ′
1 = {t1, t2, . . . , tr, t

−1
1 , t−1

2 , . . . , t−1
r } ⊂ T ∩T−1, where 1 ≤ r ≤ m

2
. Since both T ∪{e}

and T−1∪{e} are right transversals of H in G, we have Ht−1
i 6= Hti for 1 ≤ i ≤ r. Since H

is normal in G and ti 6= t−1
i , there exist elements h, h′ of H such that hti 6= (hti)

−1 = h′t−1
i .

Let T ′′ be the subset of G obtained from T ′
1 by replacing ti, t

−1
i by hti, h

′t−1
i , respectively,

for 1 ≤ i ≤ r. Since Hti = Hhti and Ht−1
i = Hht−1

i , T ′′ ∪ {e} is a right transversal

of H in G. Also, we have (T0 ∪ T ′′)−1 = T0 ∪ T ′′. Note that T0 ∩ T ′′ = ∅ and both

T0 ∪ {e} and T ′′ ∪ {e} are right transversals of H in G. Therefore, by Lemma 2.7, H is a

(0, 2l + 2)-regular set in Cay(G, (∪2l
i=1Ri) ∪ T0 ∪ T ′′) and hence a (0, 2l + 2)-regular set of

G. This completes the proof.

The following result was proved by Huang, Xia and Zhou in [22].

Lemma 4.2. [22, Theorem 2.2] Let G be a group and H a proper normal subgroup of

G. Then H is a (0, 1)-regular set of G if and only if for any g ∈ G with g2 ∈ H there

exists an element h ∈ H such that (gh)2 = e.

This result was generalized as follows by Wang, Xia and Zhou in [33].

Lemma 4.3. [33, Theorem 1.2] Let G be a group and H a non-trivial proper normal

subgroup of G. Then H is a (0, 1)-regular set of G if and only if H is an (a, b)-regular

set of G for every pair of integers a, b with 0 ≤ a ≤ |H| − 1 and 0 ≤ b ≤ |H| such that

gcd(2, |H| − 1) divides a.
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Using Lemmas 4.2 and 4.3, we obtain the following result.

Theorem 4.4. Let G be a group and H a non-trivial proper normal subgroup of G. Then

for any odd integer k between 1 and |H|, H is a (0, k)-regular set of G if and only if for

any g ∈ G with g2 ∈ H there exists an element h ∈ H such that (gh)2 = e.

Proof. The sufficiency follows Lemmas 4.2 and 4.3. To prove the necessity, suppose that k

is an odd integer between 1 and |H| and H is a (0, k)-regular set of G. Then by Lemma 2.7

there exists an inverse-closed subset S of G which can be partitioned into L1, L2, . . . , Lk

such that Li ∪ {e} is a left transversal of H in G for 1 ≤ i ≤ k. Note that |S| = k|Li| =

k(n−1) for each i, where n = |G : H|. So we can write S = {si,j : 1 ≤ i ≤ k, 1 ≤ j ≤ n−1}

such that Li = {si,1, si,2, . . . , si,n−1} for 1 ≤ i ≤ k and s1,jH = s2,jH = · · · = sk,jH for

1 ≤ j ≤ n − 1. Consider any g ∈ G \ H with g2 ∈ H . For each 1 ≤ i ≤ k, there

exists an element si,ji ∈ Li such that g ∈ si,jiH , where ji depends on i. Since g2 ∈ H

and H is normal in G, we have si,jiH = gH = g−1H = Hg−1 = s−1
i,ji

H = Hs−1
i,ji

. Set

T = {si,ji ∈ S : gH = si,jiH}. Then T−1 = T . Since |T | = k and k is odd, it follows that

there exists 1 ≤ i ≤ k such that s−1
i,ji

= si,ji. Since g ∈ si,jiH , we have si,ji = gh for some

h ∈ H . Hence (gh)2 = s2i,ji = e. So we have proved that for any g ∈ G \H with g2 ∈ H

there exists an element h ∈ H such that (gh)2 = e. Obviously, the same statement holds

for any g ∈ H as well. This completes the proof.

Obviously, Theorem 4.4 is a generalization of Lemma 4.2, but on the other hand its

proof relies on Lemma 4.2. Note that the “only if” part in Theorem 4.4 is not implied in

Lemmas 4.2 and 4.3 as our k is fixed. Theorem 4.4 implies the following corollary.

Corollary 4.5. Let G be a group and H a non-trivial proper normal subgroup of G. Then

for any odd integers k, l between 1 and |H|, H is a (0, k)-regular set of G if and only if it

is a (0, l)-regular set of G. In particular, for any odd integer k between 1 and |H|, H is

a (0, 1)-regular set of G if and only if it is a (0, k)-regular set of G.

Note that the “only if” part of the second statement in this corollary is implied in the

“only if” part of Lemma 4.3, but the “if” part of this statement is stronger than the “if”

part of Lemma 4.3 as k is fixed.

Corollary 4.5 and part (a) of Corollaries 2.3 and 2.4 in [22] together imply the following

result.

Corollary 4.6. Let G be a group and H a non-trivial proper normal subgroup of G. If

either |H| or |G : H| is odd, then for any odd integer k between 1 and |H|, H is a (0, k)-

regular set of G. In particular, if G is of odd order, then any non-trivial normal subgroup

H of G is a (0, k)-regular set of G for any odd integer k between 1 and |H|.

The following lemma consists of three results from [22]. We will use this lemma to

prove our final result in this section.
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Lemma 4.7. Let G be an abelian group with Sylow 2-subgroup P = 〈a1〉 × · · · × 〈an〉,

where ai has order 2mi > 1 for 1 ≤ i ≤ n. Let H be a proper subgroup of G. Then the

following statements hold:

(a) H is a (0, 1)-regular set of G if and only if H ∩ P is a (0, 1)-regular set of P ([22,

Lemma 2.5]);

(b) if H is a (0, 1)-regular set of G, then either H ∩ P is trivial or H ∩ P projects onto

at least one of 〈a1〉, . . . , 〈an〉 ([22, Lemma 2.6(a)]);

(c) if H ∩ P is cyclic, then H is a (0, 1)-regular set of G if and only if either H ∩ P is

trivial or H ∩ P projects onto at least one of 〈a1〉, . . . , 〈an〉 ([22, Theorem 2.7(a)]).

The three parts of the following result generalize [22, Lemma 2.5], [22, Theorem 2.7(a)]

and [22, Corollary 2.8(a)], respectively.

Theorem 4.8. Let G be an abelian group with Sylow 2-subgroup P = 〈a1〉 × · · · × 〈an〉,

where ai has order 2
mi > 1 for 1 ≤ i ≤ n, and let H be a proper subgroup of G. Then the

following hold:

(a) for any odd integer k between 1 and |H|, H is a (0, k)-regular set of G if and only if

H ∩ P is a (0, k)-regular set of P ;

(b) if H ∩P is cyclic, then for any odd integer k between 1 and |H|, H is a (0, k)-regular

set of G if and only if either H ∩ P is trivial or H ∩ P projects onto at least one of

〈a1〉, . . . , 〈an〉;

(c) if G is a cyclic group, then for any odd integer k between 1 and |H|, H is a (0, k)-

regular set of G if and only if either |H| or |G : H| is odd.

Proof. (a) In view of Corollary 4.5, for any odd integer k between 1 and |H|, H is a (0, k)-

regular set of G if and only if it is a (0, 1)-regular set of G. By part (a) of Lemma 4.7, H is

a (0, 1)-regular set of G if and only if H ∩ P is a (0, 1)-regular set of P . By Corollary 4.5

again, H ∩ P is a (0, 1)-regular set of P if and only if it is a (0, k)-regular set of P .

Combining these statements, we obtain (a) immediately.

(b) By part (a), it suffices to prove (b) in the case when G = P = 〈a1〉 × · · · × 〈an〉

and H ∩ P = H is cyclic. In this case, by Corollary 4.5, H is a (0, k)-regular set of G for

any odd integer k between 1 and |H| if and only if it is a (0, 1)-regular set of G, which,

by part (c) of Lemma 4.7, is true if and only if either H ∩ P is trivial or H projects onto

at least one of 〈a1〉, . . . , 〈an〉.

(c) In the special case when G is a cyclic group, a subgroup H of G is a (0, k)-regular

set of G for any odd integer k between 1 and |H| if and only if either H ∩ P is trivial

or H ∩ P = P . However, H ∩ P is trivial if and only if |H| is odd, whilst H ∩ P = P if

and only if |G : H| is odd. Therefore, H is a (0, k)-regular set of G for any odd integer k

between 1 and |H| if and only if either |H| or |G : H| is odd.
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5 Subgroup (0, k)-regular sets of dihedral groups and

generalized quaternion groups

Recall that the dihedral group D2n of order 2n is defined as

D2n = 〈a, b | an = b2 = e, bab = a−1〉. (2)

It is known that the subgroups of D2n are the cyclic groups 〈at〉 with t dividing n and the

dihedral groups 〈at, asb〉 with t dividing n and 0 ≤ s ≤ n− 1. All subgroup (0, 1)-regular

sets of D2n were determined in [22, Theorem 2.11]. Part (b) of the following theorem

generalizes this result to subgroup (0, k)-regular sets of D2n for odd integers k.

Theorem 5.1. Let D2n be the dihedral group of order 2n ≥ 6 as given in (2), and let H

be a proper subgroup of D2n. Then the following statements hold for any integer k between

1 and |H|:

(a) if k is even, then H is a (0, k)-regular set of D2n;

(b) if k is odd, then H is a (0, k)-regular set of D2n if and only if H � 〈a〉, or H ≤ 〈a〉

with at least one of |H| and n
|H|

odd.

Proof. We deal with the two types of proper subgroups of D2n separately.

Claim 1. If H = 〈at〉 with t dividing n, then the following hold for any integer k

between 1 and |H|: (i) if k is even, then H is a (0, k)-regular set of D2n; (ii) if k is odd,

then H is a (0, k)-regular set of D2n if and only if t or n
t
is odd.

In fact, since H = 〈at〉 is a normal subgroup of D2n, statement (i) follows from

Theorem 4.1. Note that |H| = n
t
. By Corollary 4.5, if k is odd, then H is a (0, k)-regular

set of D2n if and only if H is a (0, 1)-regular set of D2n. By [22, Lemma 2.9], H is a

(0, 1)-regular set of D2n if and only if t or n
t
is odd. Combining these, we obtain (ii) and

hence establish Claim 1.

Claim 2. If H = 〈at, asb〉 with t dividing n and 0 ≤ s ≤ n−1, then H is a (0, k)-regular

set of D2n for any integer k between 1 and |H|.

By Lemma 2.7, to prove this claim it suffices to construct k pairwise disjoint subsets

S1, S2, . . . , Sk of D2n \ {e} such that their union is inverse-closed and Si ∪ {e} is a right

transversal of H in D2n for 1 ≤ i ≤ k. In fact, since t divides n, we have n = tm for some

integer m. Since |〈a〉| = n, we have |〈at〉| = m and hence |H| = 2m. Define

Ri = {ait+s−jb : j = 1, 2, . . . , t− 1}, 0 ≤ i ≤ m− 1

Ti = {ait+j : j = 1, 2, . . . , t− 1}, 0 ≤ i ≤ m− 1.

Note that these are 2m pairwise disjoint subsets of D2n \ {e}. A simple computation

shows that, for each 1 ≤ i ≤ m−1, both Ri ∪{e} and Ti∪{e} are right transversals of H

in D2n, and moreover R−1
i = Ri and (Ti ∪ Tm−1−i)

−1 = Ti ∪ Tm−1−i. If 1 ≤ k ≤ m, we set

S = R0 ∪ R1 ∪ · · · ∪ Rk−1;
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and if m < k ≤ |H|, we set

S = T0 ∪ T1 ∪ · · · ∪ Tm−2 ∪ Tm−1 ∪ Rk−m−1 ∪ Rk−m−2 ∪ · · · ∪ R1 ∪ R0.

In either case, by Lemma 2.7, H is a (0, k)-regular set in Cay(D2n, S) and therefore a

(0, k)-regular set of D2n. This establishes Claim 2.

Combining Claims 1 and 2, we obtain part (a) and the sufficiency in part (b).

Finally, for any proper subgroup H of D2n, we have either H � 〈a〉 or H = 〈at〉 ≤ 〈a〉

for some t dividing n. Moreover, if H = 〈at〉 is a (0, k)-regular set of D2n for some odd

integer k between 1 and |H| = n
t
, then by (ii) in Claim 1, either t or n

t
is odd. This

establishes the necessity in part (b) and hence completes the proof.

The generalized quaternion group Q4n of order 4n is defined as

Q4n = 〈a, b | an = b2, a2n = e, b−1ab = a−1〉. (3)

It is known that the subgroups of Q4n are 〈at〉 with t dividing 2n and 〈at, asb〉 with t

dividing 2n and 0 ≤ s ≤ t − 1. All subgroup (0, 1)-regular sets of Q4n were determined

by Ma et al. in [26, Theorem 1.7]. Part (b) of the following theorem extends this result

to subgroup (0, k)-regular sets of Q4n for odd integers k.

Theorem 5.2. Let Q4n be the generalized quaternion group of order 4n ≥ 8 as given in

(3), and let H be a proper subgroup of Q4n. Then the following statements hold for any

integer k between 1 and |H|:

(a) if k is even, then H is a (0, k)-regular set of Q4n;

(b) if k is odd, then H is a (0, k)-regular set of Q4n if and only if either H = 〈at〉 with t

a divisor of 2n such that 2n
t
is odd, or H = 〈at, asb〉 with t an odd divisor of 2n and

0 ≤ s ≤ t− 1.

Proof. We handle the two types of proper subgroups of Q4n separately.

Claim 1. If H = 〈at〉 with t dividing 2n, then the following hold for any integer k

between 1 and 2n
t
: (i) if k is even, then H is a (0, k)-regular set of Q4n; (ii) if k is odd,

then H is a (0, k)-regular set of Q4n if and only if 2n
t
is odd.

In fact, since H = 〈at〉 is a normal subgroup of Q4n, by Theorem 4.1, H is a (0, k)-

regular set of Q4n for any even integer k between 1 and 2n
t
. By Corollary 4.5, for any

odd integer k between 1 and 2n
t
, H is a (0, k)-regular set of Q4n if and only if it is a

(0, 1)-regular set of Q4n, which, by [26, Theorem 1.7], occurs if and only if 2n
t
is odd. This

proves Claim 1.

Claim 2. If H = 〈at, asb〉 with t dividing 2n and 0 ≤ s ≤ t− 1, then the following hold

for any integer k between 1 and |H|: (i) if k is even, then H is a (0, k)-regular set of Q4n;

(ii) if k is odd, then H is a (0, k)-regular set of Q4n if and only if t is odd.
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Since any subgroup of Q4n not contained in 〈a〉 contains an = b2, in the proof of Claim

2, we may assume without loss of generality that t divides n, say, n = mt for some integer

m. Then |H| = 4n
t
= 4m and |G : H| = t. Define

Ri = {ait+j : j = 1, 2, . . . , t− 1}, 0 ≤ i ≤ 2m− 1 (4)

Ti = {ait+s+jb : j = 1, 2, . . . , t− 1}, 0 ≤ i ≤ m− 2 (5)

and

T = {ab, a2b, . . . , as−2b, as−1b, a−t+s+1b3, a−t+s+2b3, . . . , a−1b3, b3}.

Then

T−1
i = {ait+s+jb3 : j = 1, 2, . . . , t− 1}, 0 ≤ i ≤ m− 2

T−1 = {ab3, a2b3, . . . , as−2b3, as−1b3, a−t+s+1b, a−t+s+2b, . . . , a−1b, b}.

Note that R−1
i = R2m−1−i for 0 ≤ i ≤ 2m− 1. A simple computation shows that Ri ∪ {e}

is a right transversal of H in Q4n for 0 ≤ i ≤ 2m−1. Similarly, T ∪{e}, T−1∪{e}, Ti∪{e}

and T−1
i ∪ {e} for 0 ≤ i ≤ m− 2 are all right transversals of H in Q4n.

For any even integer k between 2 and 2m, set

S = R0 ∪R1 ∪ · · · ∪ Rk
2
−2 ∪ Rk

2
−1 ∪ R2m− k

2

∪ R2m− k
2
+1 ∪ · · · ∪R2m−2 ∪R2m−1;

and for any even integer k between 2m+ 2 and 4m, set

S = T ∪T−1∪T0∪· · ·∪Tm−2∪T−1
0 ∪· · ·∪T−1

m−2∪Rk
2
−m−1∪· · ·∪R0∪R3m− k

2

∪· · ·∪R2m−1.

In either case S is inverse-closed. Thus, by Lemma 2.7, for any even integer k between

2 and |H|, H is a (0, k)-regular set in Cay(Q4n, S) and hence a (0, k)-regular set of Q4n.

This proves (i) in Claim 2.

Now we prove (ii) in Claim 2. Suppose that H is a (0, k)-regular set of Q4n for some

odd k. Then by Lemma 2.7 there exists an inverse-closed subset S of Q4n \ {e} with

|S| = k(t − 1) such that Cay(Q4n, S) admits H as a (0, k)-regular set. If t is even, then

|S| is odd. Since S−1 = S and an is the only involution in Q4n, we must have an ∈ S, but

this is a contradiction. Hence t must be odd and the “only if” part in (ii) is established.

To prove the “if” part in (ii), assume that t is odd, say, t = 2r + 1 for some integer r.

Define

R = {a, a−1, a2, a−2, . . . , ar, a−r}

R′ = {ar+1, a−r−1, ar+2, a−r−2, . . . , at−1, a1−t}.

Then both R and R′ are inverse-closed, and both R∪{e} and R′∪{e} are right transversals

of H in Q4n. For any odd integer 2l + 1 between 1 and 2m− 1, define

S = R1 ∪ · · · ∪ Rl ∪ R2m−1−l ∪ · · · ∪R2m−2 ∪R;
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and for any odd integer 2l + 1 between 2m+ 1 and 4m− 1, define

S = T ∪T−1∪T0∪· · ·∪Tm−2∪T
−1
0 ∪· · ·∪T−1

m−2∪R1∪· · ·∪Rl−m∪R3m−1−l∪· · ·∪R2m−2∪R.

In either case S is inverse-closed. Thus, by Lemma 2.7, for any odd integer k between

1 and |H|, H is a (0, k)-regular set in Cay(Q4n, S) and hence a (0, k)-regular set of Q4n.

This completes the proof of Claim 2.

The desired result follows from Claims 1 and 2 immediately.

6 (0, k)-regular sets in cubelike graphs

In this and the next sections we use V (n, p) to denote the n-dimensional linear space over

Fp, where n ≥ 1, p is a prime, and Fp is the finite field with p elements. We identify the

elementary abelian p-group Zn
p with the additive group of V (n, p). The vectors of V (n, p)

are treated as column vectors and the zero vector of V (n, p) is denoted by 0n. Given an

m × m matrix M over Fp, we use Mi to denote the i-th column of M , for 1 ≤ i ≤ m.

For any integer 1 ≤ t ≤ n, let Pt×n(p) = (I 0) be the t× n matrix over Fp whose first t

columns form the t× t identity matrix I and last n− t columns form the t× (n− t) all-0

matrix 0.

The n-dimensional cube Qn is the Cayley graph of Zn
2 with respect to the set of

vectors with exactly one nonzero coordinate. In general, any Cayley graph of Zn
2 is called

[16] a cubelike graph. A (0, 1)-regular set in Qn is precisely a perfect 1-error correcting

binary code of length n in coding theory. It is known (see, for example, [20]) that (0, 1)-

regular sets in Qn exist if and only if n = 2t − 1 for some t ≥ 1, and most likely

Hamming [18] was the first person who constructed (0, 1)-regular sets in Q2t−1. In this

section, we generalize these results to (0, k)-regular sets in hypercubes Qn. We first give a

sufficient condition for a connected cubelike graph admitting (0, k)-regular sets. For any

connected cubelike graph Cay(Zn
2 , S), denote U =

(
u1 u2 · · · ud

)
the n × d matrix

with rank n, where S = {u1,u2, . . . ,ud} for 1 ≤ d. Let N be the t × (2t − 1) matrix

over F2 whose columns are the nonzero vectors of V (t, 2). For any integer 1 ≤ k, denote

N(k) =



 N N · · · N
︸ ︷︷ ︸

k times



.

Lemma 6.1. Let n and k be integers with n > k ≥ 1. Let Cay(Zn
2 , S) be a connected

cubelike graph with |S| = d. If there is an integer 1 ≤ t ≤ n such that d = (2t − 1)k and

there is a non-singular matrix R such that Pt×n(2)RU = N(k), then Cay(Zn
2 , S) admits

a (0, k)-regular set.

Proof. Let Γ = Cay(Zn
2 , S) be a connected cubelike graph. Assume that |S| = d :=

(2t − 1)k ≤ 2n − 1 for some 1 ≤ t ≤ n. Write S = {u1,u2, . . . ,ud} ⊆ V (n, 2) \ {0n}. Set

P = Pt×n(2). Since there is an integer 1 ≤ t ≤ n such that d = (2t − 1)k and there is a
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non-singular matrix R such that PRU = N(k), then there exists an n× d matrix Q over

F2 with rank n such that

PQ =



 N N · · · N
︸ ︷︷ ︸

k times



 .

In fact, we can take Q = RU , where U =
(
u1 u2 · · · ud

)
is the n×d matrix with rank

n. Set M = PR. Since P has rank t, R is a non-singular matrix, M is a t × n matrix

over F2 with rank t. Hence the null space of M , namely

W = {w ∈ V (n, 2) : Mw = 0n}, (6)

is an (n− t)-dimensional subspace of V (n, 2). In the rest proof we will show that W is a

(0, k)-regular set in Γ.

Claim 1. W is an independent set of Γ.

Suppose to the contrary that there exist distinct vertices v,w ∈ W which are adjacent

in Γ. Then w = v + ui for some ui ∈ S. Since M = PR, Q = RU and ui is a column of

U , we have

0n = Mw = M(v + ui) = Mv +Mui = Mui = (PR)ui = P (Rui) = P (Qi) = (PQ)i,

which contradicts the fact that all column vectors of PQ are nonzero. This proves Claim

1.

Claim 2. Every vertex v ∈ V (n, 2) \W has at most k neighbours in W .

Suppose to contrary that some v ∈ V (n, 2)\W has (at least) k+1 distinct neighbours

w1,w2, . . . ,wk,wk+1 in W . Then

v = w1 + ui1 = w2 + ui2 = · · · = wk + uik = wk+1 + uik+1

for k + 1 distinct elements ui1 ,ui2 , . . . ,uik ,uik+1
of S. Hence

0n = M(wj −w1) = M(ui1 − uij ) = Mui1 −Muij

for 2 ≤ j ≤ k + 1. Therefore, Mui1 = Mui2 = · · · = Muik+1
. Since Q = RU , M = PR

and uij is a column of U , we have Muij = P (Ruij ) = P (Qij) = (PQ)ij for 1 ≤ j ≤ k+1.

So there exist k different columns of PQ which are equal to (PQ)i1, but this contradicts

the fact that PQ does not contain k + 1 identical columns. This proves Claim 2.

Claim 3. For any v ∈ V (n, 2)\W , there exists an element ui ∈ S such that v ∈ W+ui.

In fact, since Γ is connected, any v ∈ V (n, 2) \W can be expressed as v = ui1 +ui2 +

· · ·+ uir for some (not necessarily distinct) elements ui1 ,ui2, . . . ,uir ∈ S. Thus,

Mv = Mui1 +Mui2 + · · ·+Muir = (PQ)i1 + (PQ)i2 + · · ·+ (PQ)ir .
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Since Mv 6= 0n and all nonzero vectors of V (t, 2) appear in the columns of N , Mv occurs

as a column of N , say, the i-th column of N for some i between 1 and 2t − 1. Then Mv

also occurs as the i-th column of PQ, that is, Mv = (PQ)i. Since Q = RU , M = PR,

taking the i-th column ui of U , we have Mv = (PQ)i = Mui. Hence ui − v ∈ W and

v ∈ W + ui as desired.

Claim 4. For any v ∈ V (n, 2)\W , there exist exactly k distinct elements ui1 ,ui2, . . . ,uik

of S such that v ∈ W + uij for 1 ≤ j ≤ k.

In fact, by Claim 3, for any v ∈ V (n, 2) \ W , there exists an element ui ∈ S such

that v ∈ W + ui. Since (PQ)h = (PQ)l for any 1 ≤ h ≤ d and l ≡ h + (2t − 1)j

(mod d) with 0 ≤ j ≤ k − 1, we have v ∈ W + ul for all l ∈ {1, 2, . . . , d} such that

l ≡ i + (2t − 1)j (mod d) for some 0 ≤ j ≤ k − 1. This means that there are at least k

distinct elements ul ∈ S such that v ∈ W + ul. Combining this with Claim 2, we obtain

Claim 4.

By Claims 1 and 4, W is a (0, k)-regular set in Γ. This completes the proof.

Next, we give the main result in this section.

Theorem 6.2. Let n and k be integers with n > k ≥ 1. Then the following statements

are equivalent:

(a) Qn admits a (0, k)-regular set;

(b) n = (2t − 1)k for some integer t ≥ 1;

(c) k divides n and Qn is a k-cover of Kn
k
+1.

Proof. Let Qn = Cay(Zn
2 , S), where S = {ei : 1 ≤ i ≤ n} with e1, e2, . . . , en the standard

basis of Zn
p .

(a) ⇒ (b) If Qn admits a (0, k)-regular set, then by (1), 1 + |S|
k

divides 2n and hence

Γ has degree |S| = (2t − 1)k ≤ 2n − 1 for some 1 ≤ t ≤ n.

(b) ⇒ (a) By Lemma 6.1, it is sufficient to prove that there is an n× n non-singular

matrix R such that Pt×n(2)RU = N(k). Since S = {e1, e2, . . . , en}, thus U is the n × n

identity matrix with rank n. Set P = Pt×n(2). Note that P is a t × n matrix with rank

t and N is a t× 2t − 1 matrix. Since 1 ≤ t ≤ n and n = (2t − 1)k, there exists an n× n

matrix Q over F2 with rank n such that

PQ =



 N N · · · N
︸ ︷︷ ︸

k times



 .

Since Q and U have the same rank and dimension, there are two n × n non-singular

matrices R, L over F2 such that Q = RUL. Since U is the identity matrix, thus Q =

RLU = R′U with R′ = RL. Combining this with Lemma 6.1, we obtain the result.

(a) ⇔ (c) It follows from Theorem 2.6.
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Since each hypercube graph with (0, k)-regular sets admits a non-singular matrix R

such that Pt×n(2)RU = N(k), thus the proof of Lemma 6.1 also gives a construction of a

subgroup (0, k)-regular set in any hypercube with order 2n and degree (2t− 1)k ≤ 2n− 1.

In fact, this subgroup (0, k)-regular set (as defined in (6)) is a “linear” (0, k)-regular set in

the sense that it is a subspace of the vector space V (n, 2). We illustrate this construction

by the following example.

Example 6.3. Since 6 = (22 − 1) · 2, by Corollary 6.2, Q6 admits (0, 2)-regular sets.

Following the proof of Theorem 6.1, we have t = 2 and

U =











1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











, Q = R =











0 1 1 0 1 1
1 0 1 1 0 1
1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1











,

P =

(
1 0 0 0 0 0
0 1 0 0 0 0

)

, M =

(
0 1 1 0 1 1
1 0 1 1 0 1

)

.

The null space W = {w ∈ V (6, 2) : Mw = 06} of M is a (0, 2)-regular set in Q6. Solving

{
w2 + w3 + w5 + w6 = 0
w1 + w3 + w4 + w6 = 0,

we obtain that W is the set of column vectors of the matrix:










0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0











.

7 (0, k)-regular sets in the Lee metric

The Cartesian product Γ1�Γ2� · · ·�Γn of n graphs Γ1,Γ2, . . . ,Γn is the graph with vertex

set V (Γ1)×V (Γ2)×· · ·×V (Γn) such that two vertices (u1, u2, . . . , un), (v1, v2, . . . , vn) are

adjacent if and only if there is exactly one subscript i such that ui 6= vi, and for this i, ui

and vi are adjacent in Γi. Denote by C�n
q the Cartesian product of n copies of the cycle Cq

of length q, where n ≥ 1 and q ≥ 3 are integers. Obviously, C�n
q is a 2n-regular graph. One

can see that C�n
q is the Cayley graph Cay(Zn

q , S), where S = {ei,−ei : 1 ≤ i ≤ n} with ei

is the element of Zn
q with i-th coordinate 1 and all other coordinates 0. The distance in C�n

q

between two vertices is exactly the Lee distance between the corresponding codewords.

The Lee ball with radius e and center x ∈ Zn
q is the set of elements of Zn

q with Lee distance
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at most e to x. A code C ⊆ Zn
q is called a q-ary perfect e-code under the Lee metric

if the Lee balls of radius e with centers in C form a partition of Zn
q . The well-known

Golomb-Welch conjecture asserts that there is no q-ary perfect e-codes of length n under

the Lee metric for n > 2, e > 1 and q ≥ 2e + 1. A central problem for Lee codes, this

50-year-old conjecture is still wide open [21] in its general form.

Note that q-ary perfect 1-codes of length n under the Lee metric are exactly (0, 1)-

regular sets in C�n
q . In [17], Golomb and Welch constructed p-ary perfect 1-codes of length

n = p−1
2

under the Lee metric, where p is an odd prime. More generally, a special case of

a result [1, Theorem 15] proved by AlBdaiwi, Horak and Milazzo asserts that for any odd

prime p, a p-ary linear perfect 1-code of length n under the Lee metric exists if and only

if 2n = pt − 1 for some t. The following theorem generalizes this result to (0, k)-regular

sets in C�n
p .

Theorem 7.1. Let p be an odd prime and n, k positive integers. Then C�n
p admits (0, k)-

regular sets if and only if 2n = (pt − 1)k ≤ pn − 1 for some 1 ≤ t ≤ n− 1.

Proof. We identify C�n
p with Cay(Zn

p , S), where S = {ei,−ei : 1 ≤ i ≤ n}, with

e1, e2, . . . , en the standard basis of Zn
p . We also identify Zn

p with the additive group of the

n-dimensional linear space V (n, p) over Fp.

If C�n
p admits (0, k)-regular sets, then by (1), 1 + 2n

k
divides pn and hence C�n

p has

degree 2n = (pt − 1)k ≤ pn − 1 for some 1 ≤ t ≤ n− 1, establishing the necessity.

Now we prove the sufficiency. Suppose that 2n = (pt − 1)k ≤ pn − 1 for some

1 ≤ t ≤ n − 1. Set P = Pt×n(p) = (I 0). Take N to be a t × (pt−1)
2

matrix over Fp with

columns nonzero vectors in V (t, p) such that u is a column of N if and only if −u is not

a column of N . Since 1 ≤ t ≤ n− 1, there exists an n× n matrix Q over Fp with rank n

such that

PQ =



 N N · · · N
︸ ︷︷ ︸

k times



 .

Let M = PQ. Since P is a t× n matrix with rank t and Q is an n× n matrix with rank

n, M is a t× n matrix over Fp with rank t. Hence the null space of M , namely

W = {w ∈ V (n, p) : Mw = 0n}, (7)

is an (n − t)-dimensional subspace of V (n, p). We now prove that W is a (0, k)-regular

set in Γ.

Claim 1. W is an independent set of C�n
p .

Suppose otherwise. Then there exist distinct v,w ∈ W adjacent in C�n
p . So w = v±ei

for some ei ∈ S. Thus,

0n = Mw = M(v ± ei) = Mv ±Mei = (PQ)ei = (PQ)i,
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which contradicts the fact that all column vectors of PQ are nonzero. This proves Claim

1.

Claim 2. Every vertex v ∈ V (n, p) \W has at most k neighbours in W .

Suppose to the contrary that some v ∈ V (n, p) \W has (at least) k+1 distinct neigh-

boursw1,w2, . . . ,wk,wk+1 inW . Then there exist k+1 distinct vectors u1,u2, . . . ,uk,uk+1

in S such that

v = w1 + u1 = w2 + u2 = · · · = wk + uk = wk+1 + uk+1.

Hence

0n = M(wj −w1) = M(u1 − uj) = Mu1 −Muj

for 2 ≤ j ≤ k + 1. Since u1 = ±ei for some i, it follows that there exist k different

columns of PQ which are equal to ±(PQ)i, which contradicts the fact that PQ does not

contain k + 1 identical columns. This proves Claim 2.

Claim 3. For any v ∈ V (n, p)\W , there exists an element ei ∈ S such that v ∈ W±ei.

In fact, since C�n
p is connected, any v ∈ V (n, p) \W can be expressed as v = ui1 +

ui2 + · · · + uir , where uij = ±eij ∈ S for 1 ≤ j ≤ r. (Note that i1, i2, . . . , ir are not

necessarily distinct.) Note that for any nonzero vector u of V (t, p), either u or −u is a

column of N . Thus, if u is a column of N , then u is a column of PQ; otherwise, −u

is a column of PQ. Since Mv 6= 0n, it follows that Mv is a column of PQ or −PQ,

say, Mv = ±(PQ)i for some i. Since ±(PQ)i = Mui where ui = ±ei, it follows that

v − ui ∈ W . That is, v ∈ W ± ei as desired.

Claim 4. For any v ∈ V (n, p)\W , there exist exactly k distinct elements ei1 , ei2 , . . . , eik
in S such that v ∈ W ± eij for 1 ≤ j ≤ k.

In fact, by Claim 3, for any v ∈ V (n, p) \W , there exists an element ei ∈ S such that

v ∈ W ± ei. Since (PQ)h = (PQ)l for any 1 ≤ h ≤ n and l ≡ h + (pt−1)
2

j (mod n) with

0 ≤ j ≤ k−1, we have v ∈ W±el for all l ∈ {1, 2, . . . , n} such that l ≡ i+ (pt−1)
2

j (mod n)

for some 0 ≤ j ≤ k− 1. Therefore, there are at least k distinct elements el of S such that

v ∈ W ± el. Combining this with Claim 2, we obtain Claim 4.

By Claims 1 and 4, W is a (0, k)-regular set in C�n
p . This completes the proof.

The proof above gives, for any odd prime p and positive integers n, k satisfying 2n =

(pt−1)k ≤ pn−1 for some 1 ≤ t ≤ n−1, a construction of a (0, k)-regular set (as defined

in (7)) in C�n
p , and moreover this (0, k)-regular set is “linear” as it is a subspace of the

vector space V (n, p).

8 Concluding remarks

Note that Theorems 4.1 and 4.4 show two necessary and sufficient conditions for a normal

subgroup of a group to be a (0, k)-regular set of the group. As seen in the proof of
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Theorems 4.1 and 4.4, the normal subgroup of a group plays a key role in obtaining the

Cayley graph of the group such that the normal subgroup is a (0, k)-regular set of the

Cayley graph for some integer 1 ≤ k. If we consider that the subgroup is not normal,

what happens? We need to keep thinking about it. Thus it would be interesting to study

whether Theorems 4.1 and 4.4 are still true if the subgroup is not normal.

As seen in Section 3, a Cayley graph Γ = Cay(G, S) admits a subgroup (0, k)-regular

set H , then Γ admits a (−k)-equitable partition with exactly |G : H| blocks and with H

as one of the blocks. In particular, π = {H, V (Γ) \H} is a (−k)-equitable partition of Γ.

Such equitable partition of Γ is called a perfect 2-coloring of Γ [13]. Perfect 2-colorings of

a graph have been studied extensively over many years, such as, the existence of perfect

2-colorings of Johnson graphs J(v, 3) [14], Hamming graph [5] and generalized Petersen

graphs [28, 29]. Similar to the study of perfect 2-colorings of some graphs, it would be

interesting to give all possible regular sets of some graphs.

In addition, completely regular subsets of a graph are closely related to the perfect

codes of the graph. Given a graph Γ, a subset V of V (Γ) is called a completely regular set

[15] of Γ if π(V ) = {V0, V1, . . . , Vd} is an equitable partition of Γ, where Si is the set of all

vertices at distance i from S for any integer 0 ≤ i ≤ d, and d is the covering radius of S.

Some known results using completely regular sets and equitable partitions can help us to

classify certain perfect codes of some graphs. What happens to these notations when we

study regular sets of groups? This will be considered in our future work.

In Section 6, we gave a sufficient condition for cubelike graphs admitting (0, k)-regular

sets. Using the result, we obtained the necessary and sufficient condition for the existence

of (0, k)-regular sets of hypercubes. It is also interesting to study the existence of (0, k)-

regular sets of cubelike graphs.
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